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Abstract

In this short note, we document some progress on an open question concerning the minimum eigen-
value of the action covariance matrix tracked by the celebrated LinUCB algorithm (Auer 2002, Dani et
al. 2008).

1 Introduction

We consider an instance (A, θ) of the stochastic linear bandit problem, where A ⊆ Rd is the ambient action
set and θ ∈ Rd is a fixed and unknown parameter. In each round t ∈ [T ] for an unknown T ∈ N, a deci-
sion maker is presented with a set of options At and chooses an action at ∈ A, receiving a scalar reward
Xt := ⟨at, θ⟩+ ηt, where ηt is independent noise. We’ll assume At ⊆ {x | ||x||2 = 1} for all t ∈ [T ] and that
ηt is bounded in [−1, 1], which gives |Xt| ≤ ||θ||2 + 1. The decision maker’s goal is to minimize their regret

R(T ) =
∑T

s=1 E [maxa∈A⟨a, θ⟩ − ⟨at, θ⟩].

A classic algorithm for this problem is as follows [2, 3]. Let Ht ∈ Rt×d denote the matrix who’s ith

row is the action taken at round i. Setting Mt := (λI +H⊤
t Ht) for some λ ≥ 1, we denote the regularized

ridge-regression estimator as θ̂t = M−1
t

∑t
s=1 asXs. Each round t, the decision maker is to play the arm

argmaxa∈A UCBt(a) where

UCBt(a) = ⟨a, θ̂t−1⟩+
√

βt||a||M−1
t−1

.

Here, βt is an appropriately chosen sequence.

Motivated by the study of a problem in multi-agent bandits1, we ask the following. For which instances
is the smallest eigenvalue of Mt order Ω(log(t))?

Considering the classic UCB algorithm for scalar bandits [1], from the structure of the reward it may
seem straightforward that each arm must be pulled Ω(log(t)) times. Naturally, this observation was made
precise and shown in [4]. Towards generalizing this theory to stochastic linear bandits, in the rest of this
note we analyze this eigenvalue by reducing the scalar bandit problem to our setting.

2 Analysis

Preliminaries Let e1 . . . ed denote the standard basis. We assume that there exists z ∈ (0, 1] fulfilling

min
i,t

max
a∈At

(⟨a, ei⟩)2 ≥ z

i.e. for every t ∈ [T ] At admits an action with some positive component towards any of the basis directions.
This condition is natural—otherwise an adversary can construct a sequence of contexts whose span degen-
erates. We’ll assume each At is the collection of the standard basis directions, so that z = 1 anyway. We

1This condition implies θ̂t is a accurate ℓ2 estimate of θ. In the study of cooperative bandits, this could give conditions for
which a selfish agent is incentivized to exploit shared information rather than exploring. In economics, such a problem is called
a free-rider problem.
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define the quantities
Ei(ℓ, k) := [ ⟨aℓ, ei⟩ ⟨aℓ+1, ei⟩ . . . ⟨ak, ei⟩ ]⊤

In some sense, ||Ei(ℓ, k)||22 is the accrued ”energy” towards direction ei, collected by a sequence of ac-
tions played from time ℓ to k. We consider the eigendecomposition of Mt as

∑
i∈[d] µi(t) eie

⊤
i , where µi(t)

= λ+ ||Ei(1, t)||22 denotes the eigenvalue of ei at time t (after playing tth action). Note µi(0) = λ.

A simple, but useful observation is that µi(t) monotonically increases with time

t1 ≤ t2 =⇒ µi(t1) ≤ µi(t2) ∀i ∈ [d] (1)

Yet another simple, but useful observation is that

t1 ≤ t2 =⇒ min
j∈[d]

µj(t1) ≤ min
j∈[d]

µi(t2) (2)

Lemma 1. For all i ∈ [d] and for all time t,

⟨θ̂t−1, ei⟩ =
1

λ+ ||Ei(1, t− 1)||22

t−1∑
s=1

⟨as, ei⟩Xs

Proof.

⟨θ̂t−1, ei⟩ = e⊤i M
−1
t−1

t−1∑
s=1

asXs =
1

µi(t− 1)
e⊤i

t−1∑
s=1

asXs =
1

µi(t− 1)

t−1∑
s=1

∑
j∈[d]

e⊤i ej⟨as, ej⟩Xs

■

Corollary 1. For all i ∈ [d] and for all time t, with L :=
√
d(||θ||2 + 1)

|⟨θ̂t−1, ei⟩| ≤
L(

µi(t− 1)
)0.49

Proof. This follows by

|⟨θ̂t−1, ei⟩| ≤
1

λ+ ||Ei(1, t− 1)||22

t−1∑
s=1

|⟨as, ei⟩||Xs|

≤ ||θ||2 + 1

λ+ ||Ei(1, t− 1)||22

t−1∑
s=1

|⟨as, ei⟩|

=
||θ||2 + 1

λ+ ||Ei(1, t− 1)||22
||Ei(1, t− 1)||1

≤
√
d(||θ||2 + 1)

λ+ ||Ei(1, t− 1)||22
||Ei(1, t− 1)||2

= L

(
||Ei(1, t− 1)||2

λ+ ||Ei(1, t− 1)||22

)
≤ L

(µi(t− 1))0.51

µi(t− 1)

In the last step we used µi(t− 1) = λ+ ||Ei(1, t− 1)||22, as well as the inequality x ≤ (λ+ x2)0.51 for λ ≥ 1.
■

Corollary 2. We can obtain a simple bound on ⟨θ̂t−1,a⟩ for any action a as

|⟨θ̂t−1,a⟩| ≤
dL

λ0.49
= O(1)
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Proof.

|⟨θ̂t−1,a⟩| ≤
d∑

i=1

|⟨a, ei⟩⟨θ̂t−1, ei⟩|
(a)

≤
d∑

i=1

L(
µi(t− 1)

)0.49 (b)

≤
d∑

i=1

L

λ0.49
(3)

where (a) follows by ||a||2 = 1 and Corollary 1; (b) follows by µi(t− 1) ≥ λ ∀i ∈ [d] ■

We’ll also apply a result from [5].

Lemma 2. For any action a, recall that UCBs(a) = ⟨a, θ̂s−1⟩ +
√
βs||a||M−1

s−1
. For the choice of

√
βs :=

√
λ||θ||2 +

√
2 log(s) + d log(dλ+s

dλ ) ([5], δ = 1/s, L = 1,m2 = ||θ||2), it holds that

UCBs(a)− ⟨a, θ̂s−1⟩ =
√

βs

√√√√∑
i∈[d]

(ai)2

µi(s− 1)

Proof. We use the following:

Mt−1ei = µi(t− 1) ei =⇒ ei
µi(t− 1)

= M−1
t−1 ei =⇒ e⊤i

µi(t− 1)
= e⊤i Mt−1

. . . to yield

||a||2
M−1

s−1

= ||
∑
i∈[d]

⟨a, ei⟩ei||2M−1
s−1

=
∑
i∈[d]

(⟨a, ei⟩)2||ei||2M−1
s−1

=
∑
i∈[d]

(⟨a, ei⟩)2

µi(s− 1)

■

The following lemma is proved via contradiction. The contrary of the lemma allows us to find a distant
time td such that there is a direction ej deficient in energy. It follows that any action with some energy
towards ej remains competitive in terms of UCB score at times close to td (”close” is necessary because other
directions may be weakly-explored at some very far time in the past from td—and hence more competitive
with ej).

Examining a sequence of times in the past t1 < t2 < · · · < td, we can argue the following recursively:

1. At t1, we can guarantee some direction ei1 gets a lot of exploration due to pigeonholing.

2. From t1 to t2, ei1 cannot receive too much exploration, since we have that any action in direction of
ej remains competitive.

3. Thus, a distinct direction from ei2 ̸= ei1 gets ”some” exploration by pigeonholing (this time with ”less
pigeonholes” by exclusion of ei1).

4. We repeat for each subsequent time interval.

If we make sure that ”some” is sufficient (i.e. about log of td), then by the end we reach a contradiction
because we find that all directions get sufficient exploration by time td, directly contradicting the existance
of ej . This is the idea of the proof.

Theorem 1. For any sequence of actions played by LinUCB,

(∃ c > 0)(∃ t∗) : t ≥ t∗ =⇒ µi(t) > cf(t) ∀ i ∈ [d]

where f(t) := log(t)(1−α) for any constant α > 0.
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Proof. Assume not; that

(∀ c > 0)(∀ t ∈ N)(∃ t̄ ≥ t) : µi(t̄) ≤ cf(t̄) for some i ∈ [d] (4)

Define γ :=
√
1− z

2 . In particular, take c ∈
(
0, (1− γ)2 z

16d2

)
. Fix a time t̃ such that for all t ≥ t̃, we have

t− d ⌈f(t)⌉ > 0 (5)

By (4), there exists a time, say td, where td ≥ t̃ fulfills

∃ j ∈ [d] : µj(td) ≤ cf(td) (6)

Applying the property (5) to the time td, we define the sequence of times tk ∈ N for k = 1 . . . d − 1 as
tk := td − (d− k)⌈f(td)⌉. To prove the theorem, it suffices to show the assumption (4) implies the following
claim (justification to follow):

Claim 1. At each time tk for k = 1 . . . d, there exists a direction eik distinct from ei1 . . . eik−1
such that

µik(tk) ≥
(
1− γ

)2 f(td)

d+ 1− k
(7)

Demonstrating the claim proves the theorem, since it shows

µik(td) ≥
(
1− γ

)2 f(td)
d

≥
(
1− γ

)2 zf(td)
16d2

> cf(td) ∀ k ∈ [d]

i.e. all the directions have sufficient energy. But this contradicts the fact that we chose td to satisfy (6), i.e.
at least one direction is deficient in energy.

We proceed to prove the claim via strong induction. The base case k = 1 is as follows. Since∑d
i=1 ||Ei(1, t1)||22 = t1, by pigeonholing there exists a direction ei1 such that µi1(t1) ≥ t1

d = td−(d−1)⌈f(td)⌉
d ≥

⌈f(td)⌉
d , where the last inequality follows by (5).

Assume the claim is true up to k − 1. Importantly, note that the induction hypothesis implies existence
of distinct ei1 . . . eik−1

at time tk−1 for which, by monotonicity of µ(·)(t) (cf. (1)) and tk−1 ≥ t1 . . . tk−1, we
have

µi1(tk−1) ≥ µi1(t1) ≥
(
1− γ

)2 f(td)
d

µi2(tk−1) ≥ µi2(t2) ≥
(
1− γ

)2 f(td)
d−1

µi3(tk−1) ≥ µi3(t3) ≥
(
1− γ

)2 f(td)
d−2

· · ·

µik−1
(tk−1) ≥

(
1− γ

)2 f(td)
d−(k−1)

It will later become useful to observe (from the above inequalities) a simpler uniform bound

µi1(tk−1) . . . µik−1
(tk−1) ≥

(
1− γ

)2 f(td)
d

(8)

To finish the induction step, it’s enough to show that not ”too many” actions have ”too much” energy
towards the aggregate of directions ei1 . . . eik−1

in the window [tk−1 + 1, tk]. Specifically,

≤ γ ⌈f(td)⌉ actions aℓ for ℓ ∈ [tk−1 + 1, tk] may satisfy
∑

i∈{i1...ik−1}

(aℓ)
2
i ≥ γ (9)
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This is enough because the following sequence of arguments ensues. The window contains exactly tk−(tk−1+
1)+1 = ⌈f(td)⌉ time slots, which implies that over the same window, using the fact each action has unit L2

norm,

> (1− γ) ⌈f(td)⌉ actions aℓ for ℓ ∈ [tk−1 + 1, tk] satisfy
∑

i/∈{i1...ik−1}

(aℓ)
2
i > 1− γ (10)

Hence, over the window [tk−1 + 1, tk], (10) implies the directions excluding ei1 . . . eik−1
accrue energy ≥

(1−γ)2⌈f(td)⌉. Another application of pigeonholing shows there must be some direction eik /∈ {ei1 . . . eik−1
}

which accrues energy ≥ (1−γ)2 ⌈f(td)⌉
d+1−k , thus finishing the induction step—all of which is a consequence of (9).

We verify that (9) holds, assuming the contrary. Specifically, assume

> γ ⌈f(td)⌉ actions aℓ for ℓ ∈ [tk−1 + 1, tk] may satisfy
∑

i∈{i1...ik−1}

(aℓ)
2
i ≥ γ (11)

This implies > γ2⌈f(td)⌉ energy is accrued towards directions ei1 . . . eik−1
in this interval. By pigeonholing,

since the interval is ⌈f(td)⌉ wide, this implies that at least one action b̃ := aτ is played at some time
τ ∈ [tk−1 + 1, tk] satisfying ∑

i∈{i1...ik−1}

(b̃)2i ≥ γ2 = 1− z

2
(12)

In turn, this implies ∑
i/∈{i1...ik−1}

(b̃)2i ≤ z

2
(13)

Prior to the choice of b̃ by LinUCB for the round τ , each UCBτ (·) score for all available actions in Aτ was
computed (which implicitly involves computation of µi(τ − 1) ∀i ∈ [d]). If we let j∗ := argminµj(τ − 1),
then by the definition of z we know there exists an action b ∈ Aτ such that (b)2j∗ ≥ z. Furthermore,

we have b ̸= b̃, since otherwise b = b̃ implies (b̃)j∗ ≥ z, hence j∗ ∈ {i1 . . . ik−1} by (12) and (13). If
j∗ ∈ {i1 . . . ik−1}, we have that (8) and the monotonicity of µ(·)(t) (cf. (2)) gives

min
j

µj(td) ≥ µj∗(τ − 1) = min
j∈{i1...ik−1}

µj(τ − 1) ≥ min
j∈{i1...ik−1}

µj(tk−1) ≥
(
1− γ

)2 f(td)
d

But minj µj(td) ≤ cf(td), so it must be that b ̸= b̃.

We proceed by showing UCBτ (b) − UCBτ (b̃) > 0, showing that b should have been played instead at τ ,
proving (9) holds. We bound the UCB score of b̃ as

UCBτ (b̃)
(a)

≤ O(1) +
√

βτ

( ∑
i∈{i1...ik−1}

(b̃)2i
µi(τ − 1)

+
∑

i/∈{i1...ik−1}

(b̃)2i
µi(τ − 1)

)1/2

(b)

≤ O(1) +
√
βτ

( ∑
i∈{i1...ik−1}

1

µi(τ − 1)
+

1

minj µj(τ − 1)

∑
i/∈{i1...ik−1}

(b̃)2i

)1/2

(c)

≤ O(1) +
√

βτ

( ∑
i∈{i1...ik−1}

1

µi(τ − 1)
+

(z/2)

minj µj(τ − 1)

)1/2

(d)

≤ O(1) +
√
βτ

(
d2

(1− γ)2 f(td)
+

(z/2)

minj µj(τ − 1)

)1/2

where (a) follows by Lemma 2 and Corollary 2; (b) follows by unit L2 norm assumption on actions; (c) fol-
lows by (13); and (d) follows by an application of µi(τ−1) ≥ µi(tk−1) as well as the bound (8) applied d times.

5



2 ANALYSIS

On the other hand, Lemma 2 yields that b fulfills

UCBτ (b) ≥ −O(1) +
√
βτ

(
z

minj µj(τ − 1)

)1/2

Combining the above bounds, we have

UCBτ (b)− UCBτ (b̃) ≥ −O(1)

+
√
βτ

((
z

minj µj(τ − 1)

)1/2

−
(

d2

(1− γ)2 f(td)
+

(z/2)

minj µj(τ − 1)

)1/2)
(14)

We proceed to lower bound the right hand side term as

√
βτ

((
z

minj µj(τ − 1)

)1/2

−
(

d2

(1− γ)2 f(td)
+

(z/2)

minj µj(τ − 1)

)1/2)
(a)

≥
√
βτ

((
1− 1√

2

)(
z

minj µj(τ − 1)

)1/2

−
(

d2

(1− γ)2 f(td)

)1/2)
(b)

≥
√
βτ

((
1− 1√

2

)(
z

cf(td)

)1/2

−
(

d2

(1− γ)2 f(td)

)1/2)
(c)

≥
√
βτ

((
1− 1√

2

)(
16d2

(1− γ)2f(td)

)1/2

−
(

d2

(1− γ)2 f(td)

)1/2)
=

√
βτ

(
3− 4√

2

)(
d2

(1− γ)2f(td)

)1/2

(d)

≥ Ω
(√

log(τ)
)(

3− 4√
2

)(
d2

(1− γ)2f(td)

)1/2

(e)

≥ Ω
(√

log(td)
)(

3− 4√
2

)(
d2

(1− γ)2f(td)

)1/2

(f)

≥ Ω
(
log(td)

α/2
)(

3− 4√
2

)(
d2

(1− γ)2

)1/2

where (a) is an application of
√
a+ b ≤

√
a +

√
b; (b) uses the fact minj µj(τ − 1) ≤ minj µj(td) ≤ cf(td);

(c) follows for our choice of c; in (d) we use the fact that

√
βτ :=

√
λ||θ||2 +

√
2 log(τ) + d log(

dλ+ τ

dλ
) ≥

√
λ||θ||2 +

√
(2 + d) log(τ)− d log(dλ)

by an application of the inequality log(x+1) > log(x)+ 1
x+1 ; (e) follows since τ ≥ t1 = td−(d−1)⌈log(td)1−α⌉;

(f) follows by simply substituting f(td) := log(td)
1−α.

Finally, combining the above with (14) yields UCBτ (b) − UCBτ (b̃) ≥ −O(1) + Ω(log(td)
α/2). Hence, for

sufficiently large t̃, we have that UCB(b) − UCB(b̃) > 0, yielding the contradiction which implies (9) holds,
which was sufficient to complete the induction, proving the claim which we showed was sufficient for the
theorem.

■

Corollary 3. In particular, for c ∈
(
0, (1− γ)2 z

16d2

)
, since the theorem holds for any α > 0, it must be that

(∃ tc) : t ≥ tc =⇒ min
j

µj(t) ≥ c log(t) (15)
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3 Discussion

In the previous section we recovered the result by [4] (which also had c = Ω(1/d2)). It is possible that these
techniques may be used to extend this argument to more general action sets—the main difficulty is tracking
the eigenvalues as the eigenvectors of Mt can vary throughout.
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