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Formulation

Definition
A MDP is a tuple M := (S, A,P,r)
e S for states, A for actions
o P ¢ RISIMIXISI is state-action-state transition matrix

o r € [0,1]18IMl is reward vector

@ Objects collectively called environment

@ Stochastic process arises by fixing a policy



Policies

Definition
A policy 7 : S — Al is a conditional distribution over A for each s € S. J

5/24



Policies

Definition

A policy 7 : S — Al is a conditional distribution over A for each s € S. J

Notation:

5/24



Policies

Definition

A policy 7 : S — Al is a conditional distribution over A for each s € S. J

Notation:

@ [l4et : set of deterministic policies for M

5/24



Policies

Definition

A policy 7 : S — Al is a conditional distribution over A for each s € S. J

Notation:

@ [l4et : set of deterministic policies for M

@ [yang : set of randomized policies M



Policies

Definition

A policy 7 : S — Al is a conditional distribution over A for each s € S. J

Notation:

@ [l4et : set of deterministic policies for M
@ [l.ang : set of randomized policies M
@ I_Idet g rlrand



Policies

Definition J

A policy 7 : S — Al is a conditional distribution over A for each s € S.

Notation:
@ [l4et : set of deterministic policies for M
@ [l.ang : set of randomized policies M
@ [Nget € MNrang
°

m(a|s) : prob. of taking a € A given in state s



Policies

Definition
A policy 7 : S — Al is a conditional distribution over A for each s € S. J

Notation:

Mget : set of deterministic policies for M

Myang : set of randomized policies M

Maet € Mrang

m(a|s) : prob. of taking a € A given in state s
If T € Mger, 7(s) is action for state s



Objective: The agent's goal is to pick a policy 7, such that it "accrues
maximal reward.”
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Formulation

Theorem (Puterman, 2005)

A policy w € lNqnq is associated with a canonical measure on the sequence
of r.v.’s S, Ao, S1, A1, ... for the MDP M.

The performance measure:

0 vig(u) i=limr e %EW(ZZ:_OI rs,.a). foru € A8l aka gain
What is a reasonable objective?

e Find 7 to max v[i,(u) for all u?

o Maybe study vj,,(u) = v, (u") == notion of irreducibility needed.



Irreducible and reversible MDPs



Irreducible and reversible MDPs

@ The on-policy transition matrix P™ for chain (S,P™) given by
P7sr,s’ =3 P(s,a),s' m(als)



Irreducible and reversible MDPs

@ The on-policy transition matrix P™ for chain (S,P™) given by
P7sr,s’ =3 P(s,a),s' m(als)

Definition (Irreducible MDP)
If V7 € Mrana, (S, P™) irreducible, then M is irreducible. J




Irreducible and reversible MDPs

@ The on-policy transition matrix P™ for chain (S,P™) given by
P7sr,s’ =3 P(s,a),s' m(als)

Definition (Irreducible MDP)
If V7 € Mrana, (S, P™) irreducible, then M is irreducible. J

Example:



Irreducible and reversible MDPs

@ The on-policy transition matrix P™ for chain (S,P™) given by
P7sr,s’ =3 P(s,a),s' m(als)

Definition (Irreducible MDP)
If V7 € Mrana, (S, P™) irreducible, then M is irreducible. J

Example: Any MDP with P, ;) o > 0 for all (s, a,s")



Irreducible and reversible MDPs

@ The on-policy transition matrix P™ for chain (S,P™) given by
P7sr,s’ =3 P(s,a),s' m(als)

Definition (Irreducible MDP)
If V7 € Mrana, (S, P™) irreducible, then M is irreducible. J

Example: Any MDP with P, ;) o > 0 for all (s, a,s")

Definition (Reversible MDP, Cogill+Peng, 2013, Anantharam 2022)
If V7 € MNyana, (S, P7) irreducible and reversible, then M is reversible. J




Irreducible and reversible MDPs

@ The on-policy transition matrix P™ for chain (S,P™) given by
P7sr,s’ =3 P(s,a),s' m(als)

Definition (Irreducible MDP)
If V7 € Mrana, (S, P™) irreducible, then M is irreducible. J

Example: Any MDP with P, ;) o > 0 for all (s, a,s")

Definition (Reversible MDP, Cogill+Peng, 2013, Anantharam 2022)
If V7 € MNyana, (S, P7) irreducible and reversible, then M is reversible. J

Note: Could replace Myang by Mger in def’s above.
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Reversible MDP Example

Theorem (Anantharam, 2022)
Q Let S, A be any finite sets
@ Let G = (S,&) any simple connected graph, with
(s,5') €€ <= Fwsy =wes>0

9 Qv = W‘fv’:' for all (s,s’), where ws == ws o
Q Letp:SxA—(0,1]

o P(S’a)vs =1-p(s,a), P(S,a),S’ = p(s,a) Qs,s’ rsa €

RISIA

M= (S,.A, P, r) is a reversible MDP.

Interpretation:
o like lazy weighted random walk, with variable laziness via p

@ actions can control laziness, but not totally
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A more general characterization

@ This construction exhibits a reversible MDP

@ Conversely, do all reversible MDPs have that structure? Sort of!

Lemma (Anatharam, '22)

Consider reversible MDP M. There exists a simple connected graph
G=(S,€) st forallac Aands#s', P, >0iff(s,s') € E.

Theorem (" bi-connection theorem” Anatharam, '22)

Let M be a reversible MDP, and G = (S, ) its canonical graph. If G is
bi-connected, then there exists a irr. and reversible Q and a function
p:SxA:— (0,1] such that for each a € A,

° Qs >0iff(s,s') €&
° P(s,a),s =1- IO(S? a)r P(s,a),s’ = p(57 a)QS,S/
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Optimization

Back to optimization.
Suppose M is irreducible, recall:

vy

Vigg(u) == limr 1E.( tT;OI rs,.a. ). for u e AlSl

For any 7, (S,P7™) is irreducible, so sum converges to same quantity
regardless of u. One can show

V;rvg = Zs,a :u’Tr(S) ﬂ-(a ’ S) rs,a

How to pick 7 to maximize?
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Primal Formulation
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—_——
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—_——
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Solve the following LP OPT:
UGS DO L

st. ¢(s,a)>0 Vs,a
Y ds,a) =1

Z ¢(5a a) = Z P(s’,a’),s ¢(5la a/) Vs

Note: feasible thanks to irreducibility of M—but, does there exists an
optimal solution? Yes!
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Dual LP of OPT

max Z o(s,a)rs,
s,a

»:SXA-R
stt. ¢(s,a) >0 Vs,a
> d(s,a) =1

Z #(s,a) = Z P(si.2),s0(s',a’) Vs

s’.a’
OPT admits the dual LP:
min C
h:S—R, CeER
st rsa+ Z h(s')P(sa)s < h(s)+C Vs,a
s/
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Claim: We can find am € [Ngey such that ¢™ = ¢* for OPT.

Lemma (S.M. Ross, 1983)

For any irreducible MDP M, if there is a bounded real function
h:S — R, and a constant C, such that

C+h(s)=max(rsa+ Y P(sash(s)) Vses
s/

then there exists an optimal w € lNget, where vg,, = C.

Notation: For more compact formulas, define

wh(s’ 3) =rsa+t Zs, P(s,a),s’ h(Sl)

for each given h and pair (s, a)
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h:S — R, and a constant C, such that C + h(s) = max, 1" (s, a) for all

s € S, then there exists an optimal w € [4.:, where vavg C.

Claim: There exists a policy m € lNget such that ¢™ = ¢* for OPT

Proof.
Pick (h*, C*) as dual optimal sol'ns. Goal is to exhibit they satisfy lemma.

For each s, let a5 := arg max, 1" (s, a).
BWOC there exists § s.t. ¥ (5, az) < h*(5) + C*.
By C.S. ¢*(5,az) =0, s0 3a’ : ¢*(5,d) >0 = ¢/ (§,d') = h*(3) + C*.

But h*(8) + C* = " (5,3) < 9l (3, az) < h*(8) + C*, contradiction.
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Dual LP of OPT properties
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o If not, define updated policy 7x41(s) = arg max, )""*(s, a)
Next page: Proof that update strictly improves objective.
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@ Main computational burden is solving Poisson's equations.
@ We haven't used reversibility yet.

@ Reversibility leads to a simplified policy iteration.
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The Theorem

Theorem (Anantharam, 2022)

Consider a reversible MDP M, whose canonical graph G is bi-connected.
Let Q and p: S x A — (0, 1] be as guaranteed. Consider the following
iterative procedure.
Let some initial w9 € Mget. For k =0,1,2...
@ For m, compute C™k,
© /fds such that
r — (s rs.a) — C™
Seme(s) — = < arg max (5,2)

— 1
o) BT 0l 2
Let as denote argmax. Set my11(s) = as, and my1(s") = mi(s’) for
s’ # s. If no such s, terminate.

Then vgl, < v;f; ' and procedure converges in finite steps to an opt.
policy.
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@ Under reversibility + a little more, could get a better algorithm
o No linear system solving!
o Future Directions:

e Finite time bounds for e-approximation of opt. policy? Lower bounds
without reversibility? Upper bounds with?

o RL version—transition dynamics unknown prior, (e, d) guarantees...
Avg. reward RL still an active area of research!

o Learnability—identification of irreducible or reversible MDP, learnibility
of p
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