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Overview

1 Formulation [Barto+Sutton, 2018], [Puterman, 2014]

An example MDP
Basic definitions
Avg. reward criterion/policy gain

2 Irreducible/reversible MDPs [Anantharam 2022]

3 LP formulation/Poisson’s equation, [Ross 1983], [Cogill+Peng, 2013]

4 Policy iteration [Anantharam 2022], [Cogill+Peng, 2013]
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Formulation

Definition

A MDP is a tuple M := (S,A,P, r)

S for states, A for actions

P ∈ R|S||A|×|S| is state-action-state transition matrix

r ∈ [0, 1]|S||A| is reward vector

1 Objects collectively called environment

2 Stochastic process arises by fixing a policy
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Policies

Definition

A policy π : S → ∆|A| is a conditional distribution over A for each s ∈ S.

Notation:

Πdet : set of deterministic policies for M
Πrand : set of randomized policies M
Πdet ⊆ Πrand

π(a | s) : prob. of taking a ∈ A given in state s

If π ∈ Πdet, π(s) is action for state s
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Objective

Objective: The agent’s goal is to pick a policy π, such that it ”accrues
maximal reward.”

Several notions of ”maximal reward”—different objectives
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Formulation

Theorem (Puterman, 2005)

A policy π ∈ Πrand is associated with a canonical measure on the sequence
of r.v.’s S0,A0, S1,A1, . . . for the MDP M.

The performance measure:

vπavg(u) := limT→∞
1
T Eπ

(∑T−1
t=0 rSt ,At

)
, for u ∈ ∆|S| aka gain

What is a reasonable objective?

Find π to max vπavg(u) for all u?

Maybe study vπavg(u) = vπavg(u
′) =⇒ notion of irreducibility needed.
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Irreducible and reversible MDPs

The on-policy transition matrix Pπ for chain (S,Pπ) given by
Pπ
s,s′ :=

∑
a P(s,a),s′ π(a | s)

Definition (Irreducible MDP)

If ∀π ∈ Πrand, (S,Pπ) irreducible, then M is irreducible.

Example: Any MDP with P(s,a),s′ > 0 for all (s, a, s ′)

Definition (Reversible MDP, Cogill+Peng, 2013, Anantharam 2022)

If ∀π ∈ Πrand, (S,Pπ) irreducible and reversible, then M is reversible.

Note: Could replace Πrand by Πdet in def’s above.
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Reversible MDP Example

Theorem (Anantharam, 2022)

1 Let S, A be any finite sets

2 Let G = (S, E) any simple connected graph, with

(s, s ′) ∈ E ⇐⇒ ∃ws,s′ = ws′,s > 0

3 Qs,s′ =
ws,s′
ws

for all (s, s ′), where ws :=
∑

s′ ws,s′

4 Let ρ : S ×A → (0, 1]

5 P(s,a),s := 1− ρ(s, a), P(s,a),s′ := ρ(s, a)Qs,s′ rs,a ∈ R|S||A|

M :=
(
S,A,P, r

)
is a reversible MDP.

Interpretation:

like lazy weighted random walk, with variable laziness via ρ

actions can control laziness, but not totally
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A more general characterization

This construction exhibits a reversible MDP

Conversely, do all reversible MDPs have that structure? Sort of!

Lemma (Anatharam, ’22)

Consider reversible MDP M. There exists a simple connected graph
G = (S, E) s.t. for all a ∈ A and s ̸= s ′, P(s,a),s′ > 0 iff (s, s ′) ∈ E .

Theorem (”bi-connection theorem” Anatharam, ’22)

Let M be a reversible MDP, and G = (S, E) its canonical graph. If G is
bi-connected, then there exists a irr. and reversible Q and a function
ρ : S ×A :→ (0, 1] such that for each a ∈ A,

Qs,s′ > 0 iff (s, s ′) ∈ E
P(s,a),s := 1− ρ(s, a), P(s,a),s′ := ρ(s, a)Qs,s′
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G = (S, E) s.t. for all a ∈ A and s ̸= s ′, P(s,a),s′ > 0 iff (s, s ′) ∈ E .

Theorem (”bi-connection theorem” Anatharam, ’22)

Let M be a reversible MDP, and G = (S, E) its canonical graph. If G is
bi-connected, then there exists a irr. and reversible Q and a function
ρ : S ×A :→ (0, 1] such that for each a ∈ A,

Qs,s′ > 0 iff (s, s ′) ∈ E
P(s,a),s := 1− ρ(s, a), P(s,a),s′ := ρ(s, a)Qs,s′
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Optimization

Back to optimization.

Suppose M is irreducible, recall:

vπavg(u) := limT→∞
1
T Eπ

(∑T−1
t=0 rSt ,At

)
, for u ∈ ∆|S|

For any π, (S,Pπ) is irreducible, so sum converges to same quantity
regardless of u. One can show

vπavg =
∑

s,a µ
π(s)π(a | s) rs,a

How to pick π to maximize?
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Primal Formulation

vπavg =
∑

s,a µ
π(s)π(a | s)︸ ︷︷ ︸
:=ϕπ(s,a)

rs,a

Solve the following LP OPT:

max
ϕ:S×A→R

∑
s,a

ϕ(s, a) rs,a

s.t. ϕ(s, a) ≥ 0 ∀s, a∑
s,a

ϕ(s, a) = 1∑
s,a

ϕ(s, a) =
∑
s′,a′

P(s′,a′),s ϕ(s
′, a′) ∀s

Note: feasible thanks to irreducibility of M—but, does there exists an
optimal solution? Yes!
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Dual LP of OPT

max
ϕ:S×A→R

∑
s,a

ϕ(s, a) rs,a

s.t. ϕ(s, a) ≥ 0 ∀s, a∑
s,a

ϕ(s, a) = 1∑
s,a

ϕ(s, a) =
∑
s′,a′

P(s′,a′),sϕ(s
′, a′) ∀s

OPT admits the dual LP:

min
h:S→R, C∈R

C

s.t. rs,a +
∑
s′

h(s ′)P(s,a),s′ ≤ h(s) + C ∀s, a

13 / 24



Existence of optimal det. policy

Claim: We can find aπ ∈ Πdet such that ϕπ = ϕ∗ for OPT.

Lemma (S.M. Ross, 1983)

For any irreducible MDP M, if there is a bounded real function
h : S → R, and a constant C , such that

C + h(s) = max
a

(
rs,a +

∑
s′

P(s,a),s′ h(s
′)
)

∀ s ∈ S

then there exists an optimal π ∈ Πdet, where vπavg = C .

Notation: For more compact formulas, define

ψh(s, a) := rs,a +
∑

s′ P(s,a),s′ h(s
′)

for each given h and pair (s, a)
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Continuing

Lemma (S.M. Ross, 1983)

For any irreducible MDP M, if there is a bounded real function
h : S → R, and a constant C , such that C + h(s) = maxa ψ

h(s, a) for all
s ∈ S, then there exists an optimal π ∈ Πdet, where vπavg = C .

Claim: There exists a policy π ∈ Πdet such that ϕπ = ϕ∗ for OPT

Proof.

Pick (h∗, C ∗) as dual optimal sol’ns. Goal is to exhibit they satisfy lemma.

For each s, let as := argmaxa ψ
h∗(s, a).

BWOC there exists s̃ s.t. ψh∗(s̃, as̃) < h∗(s̃) + C ∗.

By C.S. ϕ∗(s̃, as̃) = 0, so ∃ a′ : ϕ∗(s̃, a′) > 0 =⇒ ψh∗(s̃, a′) = h∗(s̃) + C ∗.

But h∗(s̃) + C ∗ = ψh∗(s̃, a′) ≤ ψh∗(s̃, as̃) < h∗(s̃) + C ∗, contradiction.
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Dual LP of OPT properties

Facts:

1 ∃π∗ ∈ Πdet given by π∗(s) = argmaxa ψ
h∗(s, a), for which ϕπ∗ = ϕ∗

2 (h∗,C ∗) are dual-optimal iff maxa ψ
h∗(s, a) = h∗(s) + C for all s.

Proof.

Take ϕ∗ = ϕπ∗ (this is OK because ϕπ∗ is primal-optimal).

Fix an s ∈ S.

The following holds iff (h∗,C ∗) are dual-optimal by S.D.

1 If a ̸= π∗(s), then ϕ∗(s, a) = 0 =⇒ ψh∗(s, a) < h∗(s) + C ∗

2 If a = π∗(s), then ϕ∗(s, a) > 0 =⇒ ψh∗(s, a) = h∗(s) + C ∗

Hence maxa ψ
h∗(s, a) = h∗(s) + C ∗.
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Dual LP of OPT properties

Facts:

1 ∃ π∗ ∈ Πdet given by π∗(s) = argmaxa ψ
h∗(s, a), for which ϕπ∗ = ϕ∗

2 (h∗,C ∗) are dual-optimal iff maxa ψ
h∗(s, a) = h∗(s) + C for all s.

Policy Iteration:

Input initial π0 ∈ Πdet, for k = 0, 1, 2, . . .

Solve Poisson’s eq’n

ψhπk (s, πk(s)) = hπk (s) + Cπk ∀ s ∈ S

for (hπk ,Cπk ) (system of |S| eq’ns in |S|+ 1 unknowns)

Check if
max
a
ψhπk (s, a) = hπk (s) + Cπk ∀ s ∈ S

If not, define updated policy πk+1(s) = argmaxa ψ
hπk (s, a)

Next page: Proof that update strictly improves objective.

17 / 24



Dual LP of OPT properties

Facts:

1 ∃ π∗ ∈ Πdet given by π∗(s) = argmaxa ψ
h∗(s, a), for which ϕπ∗ = ϕ∗

2 (h∗,C ∗) are dual-optimal iff maxa ψ
h∗(s, a) = h∗(s) + C for all s.

Policy Iteration:

Input initial π0 ∈ Πdet, for k = 0, 1, 2, . . .

Solve Poisson’s eq’n

ψhπk (s, πk(s)) = hπk (s) + Cπk ∀ s ∈ S

for (hπk ,Cπk ) (system of |S| eq’ns in |S|+ 1 unknowns)

Check if
max
a
ψhπk (s, a) = hπk (s) + Cπk ∀ s ∈ S

If not, define updated policy πk+1(s) = argmaxa ψ
hπk (s, a)

Next page: Proof that update strictly improves objective.

17 / 24



Dual LP of OPT properties

Facts:

1 ∃ π∗ ∈ Πdet given by π∗(s) = argmaxa ψ
h∗(s, a), for which ϕπ∗ = ϕ∗

2 (h∗,C ∗) are dual-optimal iff maxa ψ
h∗(s, a) = h∗(s) + C for all s.

Policy Iteration: Input initial π0 ∈ Πdet, for k = 0, 1, 2, . . .

Solve Poisson’s eq’n

ψhπk (s, πk(s)) = hπk (s) + Cπk ∀ s ∈ S

for (hπk ,Cπk ) (system of |S| eq’ns in |S|+ 1 unknowns)

Check if
max
a
ψhπk (s, a) = hπk (s) + Cπk ∀ s ∈ S

If not, define updated policy πk+1(s) = argmaxa ψ
hπk (s, a)

Next page: Proof that update strictly improves objective.

17 / 24



Dual LP of OPT properties

Facts:

1 ∃ π∗ ∈ Πdet given by π∗(s) = argmaxa ψ
h∗(s, a), for which ϕπ∗ = ϕ∗

2 (h∗,C ∗) are dual-optimal iff maxa ψ
h∗(s, a) = h∗(s) + C for all s.

Policy Iteration: Input initial π0 ∈ Πdet, for k = 0, 1, 2, . . .

Solve Poisson’s eq’n

ψhπk (s, πk(s)) = hπk (s) + Cπk ∀ s ∈ S

for (hπk ,Cπk ) (system of |S| eq’ns in |S|+ 1 unknowns)

Check if
max
a
ψhπk (s, a) = hπk (s) + Cπk ∀ s ∈ S

If not, define updated policy πk+1(s) = argmaxa ψ
hπk (s, a)

Next page: Proof that update strictly improves objective.

17 / 24



Dual LP of OPT properties

Facts:

1 ∃ π∗ ∈ Πdet given by π∗(s) = argmaxa ψ
h∗(s, a), for which ϕπ∗ = ϕ∗

2 (h∗,C ∗) are dual-optimal iff maxa ψ
h∗(s, a) = h∗(s) + C for all s.

Policy Iteration: Input initial π0 ∈ Πdet, for k = 0, 1, 2, . . .

Solve Poisson’s eq’n

ψhπk (s, πk(s)) = hπk (s) + Cπk ∀ s ∈ S

for (hπk ,Cπk ) (system of |S| eq’ns in |S|+ 1 unknowns)

Check if
max
a
ψhπk (s, a) = hπk (s) + Cπk ∀ s ∈ S

If not, define updated policy πk+1(s) = argmaxa ψ
hπk (s, a)

Next page: Proof that update strictly improves objective.

17 / 24



Dual LP of OPT properties

Facts:

1 ∃ π∗ ∈ Πdet given by π∗(s) = argmaxa ψ
h∗(s, a), for which ϕπ∗ = ϕ∗

2 (h∗,C ∗) are dual-optimal iff maxa ψ
h∗(s, a) = h∗(s) + C for all s.

Policy Iteration: Input initial π0 ∈ Πdet, for k = 0, 1, 2, . . .

Solve Poisson’s eq’n

ψhπk (s, πk(s)) = hπk (s) + Cπk ∀ s ∈ S

for (hπk ,Cπk ) (system of |S| eq’ns in |S|+ 1 unknowns)

Check if
max
a
ψhπk (s, a) = hπk (s) + Cπk ∀ s ∈ S

If not, define updated policy πk+1(s) = argmaxa ψ
hπk (s, a)

Next page: Proof that update strictly improves objective.

17 / 24



Dual LP of OPT properties

Facts:

1 ∃ π∗ ∈ Πdet given by π∗(s) = argmaxa ψ
h∗(s, a), for which ϕπ∗ = ϕ∗

2 (h∗,C ∗) are dual-optimal iff maxa ψ
h∗(s, a) = h∗(s) + C for all s.

Policy Iteration: Input initial π0 ∈ Πdet, for k = 0, 1, 2, . . .

Solve Poisson’s eq’n

ψhπk (s, πk(s)) = hπk (s) + Cπk ∀ s ∈ S

for (hπk ,Cπk ) (system of |S| eq’ns in |S|+ 1 unknowns)

Check if
max
a
ψhπk (s, a) = hπk (s) + Cπk ∀ s ∈ S

If not, define updated policy πk+1(s) = argmaxa ψ
hπk (s, a)

Next page: Proof that update strictly improves objective.

17 / 24



Monotonic Improvement

Policy Iteration: For a deterministic input policy πk , first

solve Poisson’s eq’n ψhπk (s, πk(s)) = hπk (s) + Cπk for (hπk ,Cπk )

check if maxa ψ
hπk (s, a) = hπk (s) + Cπk ∀ s ∈ S

if not, define updated policy πk+1(s) = argmaxa ψ
hπk (s, a)

Claim: vπk
avg < v

πk+1
avg , and procedure converges in finite steps.

vπk
avg = Cπk =

∑
s

µπk+1(s)Cπk

<
∑
s

µπk+1(s) [ψπk
(
s, πk+1(s)

)
− hπk (s) ]

=
∑
s

µπk+1(s) [ rs,πk+1(s) +
∑
s′

P(s,πk+1(s)),s′ h
πk (s ′)− hπk (s) ]

= v
πk+1
avg +

∑
s

(∑
s′

µπk+1(s)P(s,πk+1(s)),s′ h
πk (s ′)− µπk+1(s)hπk (s)

)
= v

πk+1
avg
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Discussion

Main computational burden is solving Poisson’s equations.

We haven’t used reversibility yet.

Reversibility leads to a simplified policy iteration.
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The Theorem

Theorem (Anantharam, 2022)

Consider a reversible MDP M, whose canonical graph G is bi-connected.
Let Q and ρ : S ×A → (0, 1] be as guaranteed. Consider the following
iterative procedure.

Let some initial π0 ∈ Πdet. For k = 0, 1, 2 . . .

1 For πk compute Cπk .

2 If ∃ s such that

r(s,πk (s)) − Cπk

ρ(s, πk(s)))
< argmax

a

r(s,a) − Cπk

ρ(s, a)
(1)

Let as denote argmax. Set πk+1(s) = as , and πk+1(s
′) = πk(s

′) for
s ′ ̸= s. If no such s, terminate.

Then vπk
avg < v

πk+1
avg , and procedure converges in finite steps to an opt.

policy.
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Proof?

21 / 24



Main Takeaways

Policy gain is an alternative objective function for policy opt.

Optimizing gain for MDPs seems quite tough

Dual formulation led to algorithm requiring O(|S |) linear system solver

Under reversibility + a little more, could get a better algorithm

No linear system solving!

Future Directions:
Finite time bounds for ϵ-approximation of opt. policy? Lower bounds
without reversibility? Upper bounds with?
RL version—transition dynamics unknown prior, (ϵ, δ) guarantees...
Avg. reward RL still an active area of research!
Learnability—identification of irreducible or reversible MDP, learnibility
of ρ
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Questions

Thanks!
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