Reversible MDP's : Potential Applications?

Alejandro Gomez-Leos

UT Austin, Analysis and Design of Comm. Networks

December 5, 2023

1 / 24

Overview

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

- An example MDP
- Basic definitions
- Avg. reward criterion/policy gain

- An example MDP
- Basic definitions
- Avg. reward criterion/policy gain

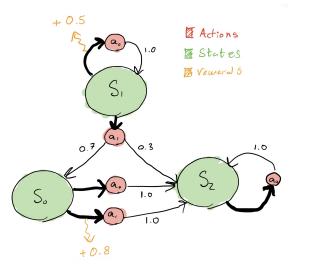
2022] Irreducible/reversible MDPs [Anantharam 2022]

- An example MDP
- Basic definitions
- Avg. reward criterion/policy gain
- 2022] Irreducible/reversible MDPs [Anantharam 2022]
- S LP formulation/Poisson's equation, [Ross 1983], [Cogill+Peng, 2013]

- An example MDP
- Basic definitions
- Avg. reward criterion/policy gain
- Irreducible/reversible MDPs [Anantharam 2022]
- 3 LP formulation/Poisson's equation, [Ross 1983], [Cogill+Peng, 2013]
- Olicy iteration [Anantharam 2022], [Cogill+Peng, 2013]

- An example MDP
- Basic definitions
- Avg. reward criterion/policy gain
- Irreducible/reversible MDPs [Anantharam 2022]
- 3 LP formulation/Poisson's equation, [Ross 1983], [Cogill+Peng, 2013]
- Olicy iteration [Anantharam 2022], [Cogill+Peng, 2013]
- 5 Future Directions

An Example



A MDP is a tuple $\mathcal{M} := (\mathcal{S}, \mathcal{A}, \mathbf{P}, \mathbf{r})$

A MDP is a tuple $\mathcal{M} := (\mathcal{S}, \mathcal{A}, \textbf{P}, \textbf{r})$

 $\bullet~\mathcal{S}$ for states, $\mathcal A$ for actions

A MDP is a tuple $\mathcal{M} := (\mathcal{S}, \mathcal{A}, \textbf{P}, \textbf{r})$

- $\bullet \ \mathcal{S}$ for states, \mathcal{A} for actions
- $\textbf{P} \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}| \times |\mathcal{S}|}$ is state-action-state transition matrix

- A MDP is a tuple $\mathcal{M} := (\mathcal{S}, \mathcal{A}, \textbf{P}, \textbf{r})$
 - ${\mathcal S}$ for states, ${\mathcal A}$ for actions
 - $\textbf{P} \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}| \times |\mathcal{S}|}$ is state-action-state transition matrix
 - $\textbf{r} \in [0,1]^{|\mathcal{S}||\mathcal{A}|}$ is reward vector

A MDP is a tuple $\mathcal{M} := (\mathcal{S}, \mathcal{A}, \mathbf{P}, \mathbf{r})$

- ${\mathcal S}$ for states, ${\mathcal A}$ for actions
- $\textbf{P} \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}| \times |\mathcal{S}|}$ is state-action-state transition matrix
- $\textbf{r} \in [0,1]^{|\mathcal{S}||\mathcal{A}|}$ is reward vector

Objects collectively called environment

- A MDP is a tuple $\mathcal{M} := (\mathcal{S}, \mathcal{A}, \mathbf{P}, \mathbf{r})$
 - ${\mathcal S}$ for states, ${\mathcal A}$ for actions
 - $\textbf{P} \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}| \times |\mathcal{S}|}$ is state-action-state transition matrix
 - $\textbf{r} \in [0,1]^{|\mathcal{S}||\mathcal{A}|}$ is reward vector
 - Objects collectively called environment
 - Stochastic process arises by fixing a policy

A policy $\pi: S \to \Delta^{|\mathcal{A}|}$ is a conditional distribution over \mathcal{A} for each $s \in S$.

A policy $\pi : S \to \Delta^{|\mathcal{A}|}$ is a conditional distribution over \mathcal{A} for each $s \in S$.

A policy $\pi: S \to \Delta^{|\mathcal{A}|}$ is a conditional distribution over \mathcal{A} for each $s \in S$.

Notation:

 $\bullet~\Pi_{\tt det}$: set of deterministic policies for ${\cal M}$

A policy $\pi : S \to \Delta^{|\mathcal{A}|}$ is a conditional distribution over \mathcal{A} for each $s \in S$.

- $\bullet~\Pi_{\tt det}$: set of deterministic policies for ${\cal M}$
- $\Pi_{\texttt{rand}}$: set of randomized policies $\mathcal M$

A policy $\pi : S \to \Delta^{|\mathcal{A}|}$ is a conditional distribution over \mathcal{A} for each $s \in S$.

- $\Pi_{\mathtt{det}}$: set of deterministic policies for $\mathcal M$
- Π_{rand} : set of randomized policies \mathcal{M}
- $\Pi_{det} \subseteq \Pi_{rand}$

A policy $\pi : S \to \Delta^{|\mathcal{A}|}$ is a conditional distribution over \mathcal{A} for each $s \in S$.

- $\Pi_{\mathtt{det}}$: set of deterministic policies for $\mathcal M$
- Π_{rand} : set of randomized policies \mathcal{M}
- $\Pi_{det} \subseteq \Pi_{rand}$
- $\pi(a \mid s)$: prob. of taking $a \in \mathcal{A}$ given in state s

A policy $\pi : S \to \Delta^{|\mathcal{A}|}$ is a conditional distribution over \mathcal{A} for each $s \in S$.

- $\Pi_{\mathtt{det}}$: set of deterministic policies for $\mathcal M$
- Π_{rand} : set of randomized policies \mathcal{M}
- $\Pi_{det} \subseteq \Pi_{rand}$
- $\pi(a \mid s)$: prob. of taking $a \in \mathcal{A}$ given in state s
- If $\pi \in \Pi_{\texttt{det}}$, $\pi(s)$ is action for state s

Objective: The agent's goal is to pick a policy π , such that it "accrues maximal reward."

Objective: The agent's goal is to pick a policy π , such that it "accrues maximal reward."

Several notions of "maximal reward"—different objectives

A policy $\pi \in \prod_{rand}$ is associated with a canonical measure on the sequence of r.v.'s $S_0, A_0, S_1, A_1, \ldots$ for the MDP \mathcal{M} .

A policy $\pi \in \prod_{rand}$ is associated with a canonical measure on the sequence of r.v.'s $S_0, A_0, S_1, A_1, \ldots$ for the MDP \mathcal{M} .

The performance measure:

•
$$v_{avg}^{\pi}(\mathbf{u}) := \lim_{T \to \infty} \frac{1}{T} \mathbb{E}_{\pi} \left(\sum_{t=0}^{T-1} \mathbf{r}_{\mathcal{S}_t, \mathcal{A}_t} \right)$$
, for $\mathbf{u} \in \Delta^{|\mathcal{S}|}$ aka gain

A policy $\pi \in \prod_{rand}$ is associated with a canonical measure on the sequence of r.v.'s $S_0, A_0, S_1, A_1, \ldots$ for the MDP \mathcal{M} .

The performance measure:

•
$$v_{avg}^{\pi}(\mathbf{u}) := \lim_{T \to \infty} \frac{1}{T} \mathbb{E}_{\pi} \left(\sum_{t=0}^{T-1} \mathbf{r}_{\mathcal{S}_t, \mathcal{A}_t} \right)$$
, for $\mathbf{u} \in \Delta^{|\mathcal{S}|}$ aka gain

What is a reasonable objective?

A policy $\pi \in \prod_{rand}$ is associated with a canonical measure on the sequence of r.v.'s $S_0, A_0, S_1, A_1, \ldots$ for the MDP \mathcal{M} .

The performance measure:

•
$$v_{avg}^{\pi}(\mathbf{u}) := \lim_{T \to \infty} \frac{1}{T} \mathbb{E}_{\pi} \left(\sum_{t=0}^{T-1} \mathbf{r}_{\mathcal{S}_t, \mathcal{A}_t} \right)$$
, for $\mathbf{u} \in \Delta^{|\mathcal{S}|}$ aka gain

What is a reasonable objective?

• Find π to max $v_{avg}^{\pi}(\mathbf{u})$ for all \mathbf{u} ?

A policy $\pi \in \prod_{rand}$ is associated with a canonical measure on the sequence of r.v.'s $S_0, A_0, S_1, A_1, \ldots$ for the MDP \mathcal{M} .

The performance measure:

•
$$v_{avg}^{\pi}(\mathbf{u}) := \lim_{T \to \infty} \frac{1}{T} \mathbb{E}_{\pi} \left(\sum_{t=0}^{T-1} \mathbf{r}_{\mathcal{S}_t, \mathcal{A}_t} \right)$$
, for $\mathbf{u} \in \Delta^{|\mathcal{S}|}$ aka gain

What is a reasonable objective?

- Find π to max $v_{avg}^{\pi}(\mathbf{u})$ for all \mathbf{u} ?
- Maybe study $v_{avg}^{\pi}(\mathbf{u}) = v_{avg}^{\pi}(\mathbf{u}') \implies$ notion of irreducibility needed.

▲口を▲聞を▲回を▲回を 回 ののの

Irreducible and reversible MDPs

• The on-policy transition matrix \mathbf{P}^{π} for chain $(\mathcal{S}, \mathbf{P}^{\pi})$ given by $\mathbf{P}_{s,s'}^{\pi} := \sum_{a} \mathbf{P}_{(s,a),s'} \pi(a \mid s)$

Definition (Irreducible MDP)

If $\forall \pi \in \Pi_{rand}$, (S, \mathbf{P}^{π}) irreducible, then \mathcal{M} is irreducible.

Definition (Irreducible MDP)

If $\forall \pi \in \Pi_{rand}$, $(\mathcal{S}, \mathbf{P}^{\pi})$ irreducible, then \mathcal{M} is irreducible.

Example:

Definition (Irreducible MDP)

If $\forall \pi \in \Pi_{rand}$, (S, \mathbf{P}^{π}) irreducible, then \mathcal{M} is irreducible.

Example: Any MDP with $P_{(s,a),s'} > 0$ for all (s, a, s')

Definition (Irreducible MDP)

If $\forall \pi \in \Pi_{rand}$, (S, \mathbf{P}^{π}) irreducible, then \mathcal{M} is irreducible.

Example: Any MDP with $P_{(s,a),s'} > 0$ for all (s, a, s')

Definition (Reversible MDP, Cogill+Peng, 2013, Anantharam 2022) If $\forall \pi \in \Pi_{rand}$, (S, \mathbf{P}^{π}) irreducible and reversible, then \mathcal{M} is reversible.

Definition (Irreducible MDP)

If $\forall \pi \in \Pi_{rand}$, (S, \mathbf{P}^{π}) irreducible, then \mathcal{M} is irreducible.

Example: Any MDP with $P_{(s,a),s'} > 0$ for all (s, a, s')

Definition (Reversible MDP, Cogill+Peng, 2013, Anantharam 2022) If $\forall \pi \in \Pi_{rand}$, (S, \mathbf{P}^{π}) irreducible and reversible, then \mathcal{M} is reversible.

Note: Could replace Π_{rand} by Π_{det} in def's above.

Reversible MDP Example

Theorem (Anantharam, 2022)

Theorem (Anantharam, 2022)

1 Let S, A be any finite sets

Theorem (Anantharam, 2022)

Let S, A be any finite sets
Let G = (S, E) any simple connected graph, with (s, s') ∈ E ⇐⇒ ∃ w_{s,s'} = w_{s',s} > 0

Theorem (Anantharam, 2022)

Let S, A be any finite sets
Let G = (S, E) any simple connected graph, with (s, s') ∈ E \iff ∃ w_{s,s'} = w_{s',s} > 0
Q_{s,s'} = ^{w_{s,s'}/w_s} for all (s, s'), where w_s := ∑_{s'} w_{s,s'}

Theorem (Anantharam, 2022)

Theorem (Anantharam, 2022) a Let S, A be any finite sets b Let $\mathcal{G} = (S, \mathcal{E})$ any simple connected graph, with $(s, s') \in \mathcal{E} \iff \exists w_{s,s'} = w_{s',s} > 0$ c $\mathbf{Q}_{s,s'} = \frac{w_{s,s'}}{w_s}$ for all (s, s'), where $w_s := \sum_{s'} w_{s,s'}$ c Let $\rho : S \times A \to (0, 1]$ c $\mathbf{P}_{(s,a),s} := 1 - \rho(s, a)$, $\mathbf{P}_{(s,a),s'} := \rho(s, a) \mathbf{Q}_{s,s'}$ $\mathbf{r}_{s,a} \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$

Theorem (Anantharam, 2022) **1** Let S, A be any finite sets 2 Let $\mathcal{G} = (\mathcal{S}, \mathcal{E})$ any simple connected graph, with $(s, s') \in \mathcal{E} \iff \exists w_{s,s'} = w_{s',s} > 0$ **3** $\mathbf{Q}_{s,s'} = \frac{w_{s,s'}}{w_s}$ for all (s,s'), where $w_s := \sum_{s'} w_{s,s'}$ • Let $\rho: \mathcal{S} \times \mathcal{A} \to (0, 1]$ $\mathbf{r}_{s,a} \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$ **9** $\mathbf{P}_{(s,a),s} := 1 - \rho(s,a), \quad \mathbf{P}_{(s,a),s'} := \rho(s,a) \mathbf{Q}_{s,s'}$ $\mathcal{M} := (\mathcal{S}, \mathcal{A}, \mathbf{P}, \mathbf{r})$ is a reversible MDP.

Theorem (Anantharam, 2022) **1** Let S, A be any finite sets 2 Let $\mathcal{G} = (\mathcal{S}, \mathcal{E})$ any simple connected graph, with $(s,s') \in \mathcal{E} \iff \exists w_{s,s'} = w_{s',s} > 0$ **3** $\mathbf{Q}_{s,s'} = \frac{w_{s,s'}}{w_s}$ for all (s,s'), where $w_s := \sum_{s'} w_{s,s'}$ • Let $\rho: \mathcal{S} \times \mathcal{A} \to (0, 1]$ $\bullet \ \mathbf{P}_{(s,a),s} := 1 - \rho(s,a), \quad \mathbf{P}_{(s,a),s'} := \rho(s,a) \, \mathbf{Q}_{s,s'} \quad \mathbf{r}_{s,a} \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$ $\mathcal{M} := (\mathcal{S}, \mathcal{A}, \mathbf{P}, \mathbf{r})$ is a reversible MDP.

Interpretation:

Theorem (Anantharam, 2022) **1** Let S, A be any finite sets 2 Let $\mathcal{G} = (\mathcal{S}, \mathcal{E})$ any simple connected graph, with $(s, s') \in \mathcal{E} \iff \exists w_{s,s'} = w_{s',s} > 0$ **3** $\mathbf{Q}_{s,s'} = \frac{w_{s,s'}}{w_s}$ for all (s,s'), where $w_s := \sum_{s'} w_{s,s'}$ • Let $\rho: \mathcal{S} \times \mathcal{A} \to (0, 1]$ $\bullet \ \mathbf{P}_{(s,a),s} := 1 - \rho(s,a), \quad \mathbf{P}_{(s,a),s'} := \rho(s,a) \, \mathbf{Q}_{s,s'} \quad \mathbf{r}_{s,a} \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$ $\mathcal{M} := (\mathcal{S}, \mathcal{A}, \mathbf{P}, \mathbf{r})$ is a reversible MDP.

Interpretation:

• like lazy weighted random walk, with variable laziness via ρ

★個 ▶ ★ 国 ▶ ★ 国 ▶ …

Theorem (Anantharam, 2022) **1** Let S, A be any finite sets 2 Let $\mathcal{G} = (\mathcal{S}, \mathcal{E})$ any simple connected graph, with $(s,s') \in \mathcal{E} \iff \exists w_{s,s'} = w_{s',s} > 0$ **3** $\mathbf{Q}_{s,s'} = \frac{w_{s,s'}}{w_s}$ for all (s,s'), where $w_s := \sum_{s'} w_{s,s'}$ • Let $\rho: S \times A \rightarrow (0, 1]$ $\bullet \ \mathbf{P}_{(s,a),s} := 1 - \rho(s,a), \quad \mathbf{P}_{(s,a),s'} := \rho(s,a) \, \mathbf{Q}_{s,s'} \quad \mathbf{r}_{s,a} \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$ $\mathcal{M} := (\mathcal{S}, \mathcal{A}, \mathbf{P}, \mathbf{r})$ is a reversible MDP.

Interpretation:

- like lazy weighted random walk, with variable laziness via ρ
- actions can control laziness, but not totally

A (1) < A (2) < A (2) </p>

• This construction exhibits a reversible MDP

- This construction exhibits a reversible MDP
- Conversely, do all reversible MDPs have that structure?

- This construction exhibits a reversible MDP
- Conversely, do all reversible MDPs have that structure? Sort of!

- This construction exhibits a reversible MDP
- Conversely, do all reversible MDPs have that structure? Sort of!

Lemma (Anatharam, '22)

Consider reversible MDP \mathcal{M} . There exists a simple connected graph $\mathcal{G} = (\mathcal{S}, \mathcal{E})$ s.t. for all $a \in \mathcal{A}$ and $s \neq s'$, $P_{(s,a),s'} > 0$ iff $(s, s') \in E$.

- This construction exhibits a reversible MDP
- Conversely, do all reversible MDPs have that structure? Sort of!

Lemma (Anatharam, '22)

Consider reversible MDP \mathcal{M} . There exists a simple connected graph $\mathcal{G} = (\mathcal{S}, \mathcal{E})$ s.t. for all $a \in \mathcal{A}$ and $s \neq s'$, $P_{(s,a),s'} > 0$ iff $(s, s') \in E$.

Theorem ("bi-connection theorem" Anatharam, '22)

Let \mathcal{M} be a reversible MDP, and $\mathcal{G} = (\mathcal{S}, \mathcal{E})$ its canonical graph. If \mathcal{G} is bi-connected, then there exists a irr. and reversible \mathbf{Q} and a function $\rho : \mathcal{S} \times \mathcal{A} :\rightarrow (0, 1]$ such that for each $a \in \mathcal{A}$,

•
$$\mathbf{Q}_{s,s'} > 0$$
 iff $(s,s') \in \mathcal{E}$

•
$$\mathbf{P}_{(s,a),s} := 1 - \rho(s,a), \quad \mathbf{P}_{(s,a),s'} := \rho(s,a) \mathbf{Q}_{s,s'}$$

イロト イヨト イヨト

Back to optimization.

Back to optimization. Suppose ${\cal M}$ is irreducible, recall:

11/24

Back to optimization. Suppose ${\cal M}$ is irreducible, recall:

$$v_{avg}^{\pi}(\mathbf{u}) := \lim_{T o \infty} rac{1}{T} \mathbb{E}_{\pi} ig(\sum_{t=0}^{T-1} \mathbf{r}_{\mathcal{S}_t, \mathcal{A}_t} ig)$$
, for $\mathbf{u} \in \Delta^{|\mathcal{S}|}$

Back to optimization. Suppose \mathcal{M} is irreducible, recall:

$$v_{avg}^{\pi}(\mathbf{u}) := \lim_{T o \infty} rac{1}{T} \mathbb{E}_{\pi} ig(\sum_{t=0}^{T-1} \mathbf{r}_{\mathcal{S}_t, \mathcal{A}_t} ig)$$
, for $\mathbf{u} \in \Delta^{|\mathcal{S}|}$

For any π , (S, \mathbf{P}^{π}) is irreducible, so sum converges to same quantity regardless of **u**. One can show

$$v^{\pi}_{ t avg} = \sum_{s,a} \mu^{\pi}(s) \, \pi(a \mid s) \, \mathbf{r}_{s,a}$$

11/24

Back to optimization. Suppose \mathcal{M} is irreducible, recall:

$$v_{avg}^{\pi}(\mathbf{u}) := \lim_{T o \infty} rac{1}{T} \mathbb{E}_{\pi} ig(\sum_{t=0}^{T-1} \mathbf{r}_{\mathcal{S}_t, \mathcal{A}_t} ig)$$
, for $\mathbf{u} \in \Delta^{|\mathcal{S}|}$

For any π , (S, \mathbf{P}^{π}) is irreducible, so sum converges to same quantity regardless of **u**. One can show

$$m{v}_{ t a ext{vg}}^{\pi} = \sum_{m{s},m{a}} \mu^{\pi}(m{s}) \, \pi(m{a} \mid m{s}) \, m{r}_{m{s},m{a}}$$

How to pick π to maximize?

11 / 24

$$\mathbf{v}_{\text{avg}}^{\pi} = \sum_{s,a} \underbrace{\mu^{\pi}(s) \, \pi(a \mid s)}_{:=\phi^{\pi}(s,a)} \mathbf{r}_{s,a}$$

▲□▶▲□▶▲目▶▲目▶ 目 のへの

$$\mathbf{v}_{\text{avg}}^{\pi} = \sum_{s,a} \underbrace{\mu^{\pi}(s) \, \pi(a \mid s)}_{:=\phi^{\pi}(s,a)} \mathbf{r}_{s,a}$$

Solve the following LP OPT:

$$\begin{split} \max_{\phi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}} & \sum_{s,a} \phi(s,a) \mathbf{r}_{s,a} \\ \text{s.t.} & \phi(s,a) \geq 0 \quad \forall s,a \\ & \sum_{s,a} \phi(s,a) = 1 \\ & \sum_{s,a} \phi(s,a) = \sum_{s',a'} \mathbf{P}_{(s',a'),s} \phi(s',a') \quad \forall s \end{split}$$

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

$$v_{\text{avg}}^{\pi} = \sum_{s,a} \underbrace{\mu^{\pi}(s) \pi(a \mid s)}_{:=\phi^{\pi}(s,a)} \mathbf{r}_{s,a}$$

Solve the following LP OPT:

$$\max_{\phi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}} \quad \sum_{s,a} \phi(s,a) \mathbf{r}_{s,a}$$
s.t. $\phi(s,a) \ge 0 \quad \forall s, a$

$$\sum_{s,a} \phi(s,a) = 1$$

$$\sum_{s,a} \phi(s,a) = \sum_{s',a'} \mathbf{P}_{(s',a'),s} \phi(s',a') \quad \forall s$$

Note: feasible thanks to irreducibility of \mathcal{M} —but, does there exists an optimal solution?

æ

イロト イ理ト イヨト イヨト

$$v_{\text{avg}}^{\pi} = \sum_{s,a} \underbrace{\mu^{\pi}(s) \pi(a \mid s)}_{:=\phi^{\pi}(s,a)} \mathbf{r}_{s,a}$$

Solve the following LP OPT:

$$\max_{\phi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}} \quad \sum_{s,a} \phi(s,a) \mathbf{r}_{s,a}$$
s.t. $\phi(s,a) \ge 0 \quad \forall s, a$

$$\sum_{s,a} \phi(s,a) = 1$$

$$\sum_{s,a} \phi(s,a) = \sum_{s',a'} \mathbf{P}_{(s',a'),s} \phi(s',a') \quad \forall s$$

Note: feasible thanks to irreducibility of \mathcal{M} —but, does there exists an optimal solution? Yes!

æ

イロト イヨト イヨト イヨト

Dual LP of OPT

$$\max_{\phi: S \times \mathcal{A} \to \mathbb{R}} \quad \sum_{s,a} \phi(s,a) \mathbf{r}_{s,a}$$
s.t. $\phi(s,a) \ge 0 \quad \forall s, a$

$$\sum_{s,a} \phi(s,a) = 1$$

$$\sum_{s,a} \phi(s,a) = \sum_{s',a'} P_{(s',a'),s} \phi(s',a') \quad \forall s$$

OPT admits the dual LP:

$$\begin{array}{l} \min\limits_{h:\mathcal{S}\to\mathbb{R},\ C\in\mathbb{R}} \quad C \\ \text{s.t.} \quad \mathbf{r}_{s,a} + \sum\limits_{s'} h(s') \, \mathbf{P}_{(s,a),s'} \leq h(s) + C \quad \forall s, a \end{array}$$

æ

メロト メポト メモト メモト

Existence of optimal det. policy

Claim: We can find $a\pi \in \Pi_{det}$ such that $\phi^{\pi} = \phi^*$ for OPT.

Existence of optimal det. policy

Claim: We can find $a\pi \in \Pi_{det}$ such that $\phi^{\pi} = \phi^*$ for OPT.

Lemma (S.M. Ross, 1983)

For any irreducible MDP M, if there is a bounded real function $h: S \to \mathbb{R}$, and a constant C, such that

$$C + h(s) = \max_{a} \left(\mathbf{r}_{s,a} + \sum_{s'} \mathbf{P}_{(s,a),s'} h(s') \right) \quad \forall s \in S$$

then there exists an optimal $\pi \in \prod_{det}$, where $v_{avg}^{\pi} = C$.

Existence of optimal det. policy

Claim: We can find $a\pi \in \Pi_{det}$ such that $\phi^{\pi} = \phi^*$ for OPT.

Lemma (S.M. Ross, 1983)

For any irreducible MDP M, if there is a bounded real function $h: S \to \mathbb{R}$, and a constant C, such that

$$C + h(s) = \max_{a} \left(\mathbf{r}_{s,a} + \sum_{s'} \mathbf{P}_{(s,a),s'} h(s') \right) \quad \forall s \in S$$

then there exists an optimal $\pi \in \prod_{det}$, where $v_{avg}^{\pi} = C$.

Notation: For more compact formulas, define

$$\psi^h(s,a) := \mathbf{r}_{s,a} + \sum_{s'} \mathbf{P}_{(s,a),s'} h(s')$$

for each given h and pair (s, a)

Lemma (S.M. Ross, 1983)

For any irreducible MDP \mathcal{M} , if there is a bounded real function $h: S \to \mathbb{R}$, and a constant C, such that $C + h(s) = \max_{a} \psi^{h}(s, a)$ for all $s \in S$, then there exists an optimal $\pi \in \prod_{det}$, where $v_{avg}^{\pi} = C$.

Claim: There exists a policy $\pi \in \Pi_{det}$ such that $\phi^{\pi} = \phi^*$ for OPT

Lemma (S.M. Ross, 1983)

For any irreducible MDP \mathcal{M} , if there is a bounded real function $h: S \to \mathbb{R}$, and a constant C, such that $C + h(s) = \max_{a} \psi^{h}(s, a)$ for all $s \in S$, then there exists an optimal $\pi \in \prod_{det}$, where $v_{avg}^{\pi} = C$.

Claim: There exists a policy $\pi \in \Pi_{det}$ such that $\phi^{\pi} = \phi^*$ for OPT

Proof.

Lemma (S.M. Ross, 1983)

For any irreducible MDP \mathcal{M} , if there is a bounded real function $h: S \to \mathbb{R}$, and a constant C, such that $C + h(s) = \max_{a} \psi^{h}(s, a)$ for all $s \in S$, then there exists an optimal $\pi \in \prod_{det}$, where $v_{avg}^{\pi} = C$.

Claim: There exists a policy $\pi \in \Pi_{det}$ such that $\phi^{\pi} = \phi^*$ for OPT

Proof.

Pick (h^*, C^*) as dual optimal sol'ns. Goal is to exhibit they satisfy lemma.

Lemma (S.M. Ross, 1983)

For any irreducible MDP \mathcal{M} , if there is a bounded real function $h: S \to \mathbb{R}$, and a constant C, such that $C + h(s) = \max_{a} \psi^{h}(s, a)$ for all $s \in S$, then there exists an optimal $\pi \in \prod_{det}$, where $v_{avg}^{\pi} = C$.

Claim: There exists a policy $\pi \in \Pi_{det}$ such that $\phi^{\pi} = \phi^*$ for OPT

Proof.

Pick (h^*, C^*) as dual optimal sol'ns. Goal is to exhibit they satisfy lemma.

For each s, let $a_s := \arg \max_a \psi^{h^*}(s, a)$.

Lemma (S.M. Ross, 1983)

For any irreducible MDP \mathcal{M} , if there is a bounded real function $h: S \to \mathbb{R}$, and a constant C, such that $C + h(s) = \max_{a} \psi^{h}(s, a)$ for all $s \in S$, then there exists an optimal $\pi \in \prod_{det}$, where $v_{avg}^{\pi} = C$.

Claim: There exists a policy $\pi \in \Pi_{det}$ such that $\phi^{\pi} = \phi^*$ for OPT

Proof.

Pick (h^*, C^*) as dual optimal sol'ns. Goal is to exhibit they satisfy lemma.

For each s, let $a_s := \arg \max_a \psi^{h^*}(s, a)$. BWOC there exists \tilde{s} s.t. $\psi^{h^*}(\tilde{s}, a_{\tilde{s}}) < h^*(\tilde{s}) + C^*$.

Lemma (S.M. Ross, 1983)

For any irreducible MDP \mathcal{M} , if there is a bounded real function $h: S \to \mathbb{R}$, and a constant C, such that $C + h(s) = \max_{a} \psi^{h}(s, a)$ for all $s \in S$, then there exists an optimal $\pi \in \prod_{det}$, where $v_{avg}^{\pi} = C$.

Claim: There exists a policy $\pi \in \Pi_{det}$ such that $\phi^{\pi} = \phi^*$ for OPT

Proof.

Pick (h^*, C^*) as dual optimal sol'ns. Goal is to exhibit they satisfy lemma.

For each *s*, let $a_s := \arg \max_a \psi^{h^*}(s, a)$. BWOC there exists \tilde{s} s.t. $\psi^{h^*}(\tilde{s}, a_{\tilde{s}}) < h^*(\tilde{s}) + C^*$. By C.S. $\phi^*(\tilde{s}, a_{\tilde{s}}) = 0$, so $\exists a' : \phi^*(\tilde{s}, a') > 0 \implies \psi^{h^*}(\tilde{s}, a') = h^*(\tilde{s}) + C^*$.

Lemma (S.M. Ross, 1983)

For any irreducible MDP \mathcal{M} , if there is a bounded real function $h: S \to \mathbb{R}$, and a constant C, such that $C + h(s) = \max_{a} \psi^{h}(s, a)$ for all $s \in S$, then there exists an optimal $\pi \in \prod_{det}$, where $v_{avg}^{\pi} = C$.

Claim: There exists a policy $\pi \in \Pi_{det}$ such that $\phi^{\pi} = \phi^*$ for OPT

Proof.

Pick (h^*, C^*) as dual optimal sol'ns. Goal is to exhibit they satisfy lemma.

For each *s*, let $a_s := \arg \max_a \psi^{h^*}(s, a)$. BWOC there exists \tilde{s} s.t. $\psi^{h^*}(\tilde{s}, a_{\tilde{s}}) < h^*(\tilde{s}) + C^*$. By C.S. $\phi^*(\tilde{s}, a_{\tilde{s}}) = 0$, so $\exists a' : \phi^*(\tilde{s}, a') > 0 \implies \psi^{h^*}(\tilde{s}, a') = h^*(\tilde{s}) + C^*$.

But $h^*(\tilde{s}) + C^* = \psi^{h^*}(\tilde{s}, a') \le \psi^{h^*}(\tilde{s}, a_{\tilde{s}}) < h^*(\tilde{s}) + C^*$, contradiction.

Facts:

1
$$\exists \pi^* \in \Pi_{det}$$
 given by $\pi^*(s) = \arg \max_a \psi^{h^*}(s, a)$, for which $\phi^{\pi^*} = \phi^*$

Facts:

∃ π* ∈ Π_{det} given by π*(s) = arg max_a ψ^{h*}(s, a), for which φ^{π*} = φ*
 (h*, C*) are dual-optimal iff max_a ψ^{h*}(s, a) = h*(s) + C for all s.

Proof.

∃ π* ∈ Π_{det} given by π*(s) = arg max_a ψ^{h*}(s, a), for which φ^{π*} = φ*
 (h*, C*) are dual-optimal iff max_a ψ^{h*}(s, a) = h*(s) + C for all s.

Proof.

Take $\phi^* = \phi^{\pi *}$ (this is OK because $\phi^{\pi *}$ is primal-optimal).

∃ π* ∈ Π_{det} given by π*(s) = arg max_a ψ^{h*}(s, a), for which φ^{π*} = φ*
 (h*, C*) are dual-optimal iff max_a ψ^{h*}(s, a) = h*(s) + C for all s.

Proof.

Take $\phi^* = \phi^{\pi *}$ (this is OK because $\phi^{\pi *}$ is primal-optimal). Fix an $s \in S$.

- $\exists \pi^* \in \Pi_{det}$ given by $\pi^*(s) = \arg \max_a \psi^{h^*}(s, a)$, for which $\phi^{\pi^*} = \phi^*$
- **2** (h^*, C^*) are dual-optimal iff $\max_a \psi^{h^*}(s, a) = h^*(s) + C$ for all s.

Proof.

Take $\phi^* = \phi^{\pi*}$ (this is OK because $\phi^{\pi*}$ is primal-optimal). Fix an $s \in S$. The following holds iff (h^*, C^*) are dual-optimal by S.D.

- **1** $\exists \pi^* \in \Pi_{det}$ given by $\pi^*(s) = \arg \max_a \psi^{h^*}(s, a)$, for which $\phi^{\pi^*} = \phi^*$
- **2** (h^*, C^*) are dual-optimal iff $\max_a \psi^{h^*}(s, a) = h^*(s) + C$ for all s.

Proof.

Take $\phi^* = \phi^{\pi*}$ (this is OK because $\phi^{\pi*}$ is primal-optimal). Fix an $s \in S$. The following holds iff (h^*, C^*) are dual-optimal by S.D.

• If
$$a \neq \pi^*(s)$$
, then $\phi^*(s, a) = 0 \implies \psi^{h^*}(s, a) < h^*(s) + C^*$

- **1** $\exists \pi^* \in \Pi_{det}$ given by $\pi^*(s) = \arg \max_a \psi^{h^*}(s, a)$, for which $\phi^{\pi^*} = \phi^*$
- **2** (h^*, C^*) are dual-optimal iff $\max_a \psi^{h^*}(s, a) = h^*(s) + C$ for all s.

Proof.

Take $\phi^* = \phi^{\pi*}$ (this is OK because $\phi^{\pi*}$ is primal-optimal). Fix an $s \in S$. The following holds iff (h^*, C^*) are dual-optimal by S.D.

If a ≠ π*(s), then φ*(s, a) = 0 ⇒ ψ^{h*}(s, a) < h*(s) + C*
 If a = π*(s), then φ*(s, a) > 0 ⇒ ψ^{h*}(s, a) = h*(s) + C*

- **1** $\exists \pi^* \in \Pi_{det}$ given by $\pi^*(s) = \arg \max_a \psi^{h^*}(s, a)$, for which $\phi^{\pi^*} = \phi^*$
- **2** (h^*, C^*) are dual-optimal iff $\max_a \psi^{h^*}(s, a) = h^*(s) + C$ for all s.

Proof.

Take $\phi^* = \phi^{\pi*}$ (this is OK because $\phi^{\pi*}$ is primal-optimal). Fix an $s \in S$. The following holds iff (h^*, C^*) are dual-optimal by S.D.

• If
$$a \neq \pi^{*}(s)$$
, then $\phi^{*}(s, a) = 0 \implies \psi^{h^{*}}(s, a) < h^{*}(s) + C^{*}$
• If $a = \pi^{*}(s)$, then $\phi^{*}(s, a) > 0 \implies \psi^{h^{*}}(s, a) = h^{*}(s) + C^{*}$
Hence $\max_{a} \psi^{h^{*}}(s, a) = h^{*}(s) + C^{*}$.

Dual LP of OPT properties

Facts:

- $\exists \pi^* \in \Pi_{det}$ given by $\pi^*(s) = \arg \max_a \psi^{h^*}(s, a)$, for which $\phi^{\pi*} = \phi^*$
- 2 (h^*, C^*) are dual-optimal iff $\max_a \psi^{h^*}(s, a) = h^*(s) + C$ for all s.

Dual LP of OPT properties

Facts:

- $\exists \pi^* \in \Pi_{det}$ given by $\pi^*(s) = \arg \max_a \psi^{h^*}(s, a)$, for which $\phi^{\pi^*} = \phi^*$
- 2 (h^*, C^*) are dual-optimal iff $\max_a \psi^{h^*}(s, a) = h^*(s) + C$ for all s.

Policy Iteration:

Dual LP of OPT properties

Facts:

9
$$\exists \pi^* \in \Pi_{det}$$
 given by $\pi^*(s) = \arg \max_a \psi^{h^*}(s, a)$, for which $\phi^{\pi*} = \phi^*$
9 (h^*, C^*) are dual-optimal iff $\max_a \psi^{h^*}(s, a) = h^*(s) + C$ for all s .

Policy Iteration: Input initial $\pi_0 \in \Pi_{det}$, for k = 0, 1, 2, ...

∃ π* ∈ Π_{det} given by π*(s) = arg max_a ψ^{h*}(s, a), for which φ^{π*} = φ*
 (h*, C*) are dual-optimal iff max_a ψ^{h*}(s, a) = h*(s) + C for all s.

Policy Iteration: Input initial $\pi_0 \in \Pi_{det}$, for k = 0, 1, 2, ...

• Solve Poisson's eq'n

 $\psi^{h^{\pi_k}}(s,\pi_k(s))=h^{\pi_k}(s)+\mathcal{C}^{\pi_k}\quad \forall\,s\in\mathcal{S}$

for (h^{π_k}, C^{π_k}) (system of $|\mathcal{S}|$ eq'ns in $|\mathcal{S}| + 1$ unknowns)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

∃ π* ∈ Π_{det} given by π*(s) = arg max_a ψ^{h*}(s, a), for which φ^{π*} = φ*
 (h*, C*) are dual-optimal iff max_a ψ^{h*}(s, a) = h*(s) + C for all s.

Policy Iteration: Input initial $\pi_0 \in \Pi_{det}$, for k = 0, 1, 2, ...

• Solve Poisson's eq'n

$$\psi^{h^{\pi_k}}(s,\pi_k(s))=h^{\pi_k}(s)+\mathcal{C}^{\pi_k}\quad orall s\in\mathcal{S}$$

for (h^{π_k}, C^{π_k}) (system of |S| eq'ns in |S| + 1 unknowns) • Check if

$$\max_{a}\psi^{h^{\pi_{k}}}(s,a)=h^{\pi_{k}}(s)+C^{\pi_{k}}\quad\forall\,s\in\mathcal{S}$$

∃ π* ∈ Π_{det} given by π*(s) = arg max_a ψ^{h*}(s, a), for which φ^{π*} = φ*
 (h*, C*) are dual-optimal iff max_a ψ^{h*}(s, a) = h*(s) + C for all s.

Policy Iteration: Input initial $\pi_0 \in \Pi_{det}$, for k = 0, 1, 2, ...

• Solve Poisson's eq'n

$$\psi^{h^{\pi_k}}(s,\pi_k(s))=h^{\pi_k}(s)+\mathcal{C}^{\pi_k}\quad orall s\in\mathcal{S}$$

for (h^{π_k}, C^{π_k}) (system of |S| eq'ns in |S| + 1 unknowns) • Check if $\max_{k \in \mathbb{Z}} e^{h^{\pi_k}}(c, k) = h^{\pi_k}(c) + C^{\pi_k} \quad \forall c \in S$

$$\max_{a}\psi^{h^{\pi_{k}}}(s,a)=h^{\pi_{k}}(s)+C^{\pi_{k}}\quad\forall\,s\in\mathcal{S}$$

• If not, define updated policy $\pi_{k+1}(s) = \arg \max_a \psi^{h^{\pi_k}}(s, a)$

イロト 不得 トイラト イラト 一日

∃ π* ∈ Π_{det} given by π*(s) = arg max_a ψ^{h*}(s, a), for which φ^{π*} = φ*
 (h*, C*) are dual-optimal iff max_a ψ^{h*}(s, a) = h*(s) + C for all s.

Policy Iteration: Input initial $\pi_0 \in \Pi_{det}$, for k = 0, 1, 2, ...

• Solve Poisson's eq'n

$$\psi^{h^{\pi_k}}(s,\pi_k(s))=h^{\pi_k}(s)+\mathcal{C}^{\pi_k}\quad orall s\in\mathcal{S}$$

for (h^{π_k}, C^{π_k}) (system of |S| eq'ns in |S| + 1 unknowns) • Check if

$$\max_{\mathsf{a}}\psi^{h^{\pi_k}}(s,\mathsf{a})=h^{\pi_k}(s)+C^{\pi_k}\quad\forall\,s\in\mathcal{S}$$

• If not, define updated policy $\pi_{k+1}(s) = \arg \max_{a} \psi^{h^{\pi_k}}(s, a)$ Next page: Proof that update strictly improves objective.

Policy Iteration: For a deterministic input policy π_k , first

- solve Poisson's eq'n $\psi^{h^{\pi_k}}(s,\pi_k(s)) = h^{\pi_k}(s) + C^{\pi_k}$ for (h^{π_k},C^{π_k})
- check if $\max_a \psi^{h^{\pi_k}}(s,a) = h^{\pi_k}(s) + \mathcal{C}^{\pi_k} \quad \forall \, s \in \mathcal{S}$
- if not, define updated policy $\pi_{k+1}(s) = \arg \max_a \psi^{h^{\pi_k}}(s, a)$

Claim: $v_{avg}^{\pi_k} < v_{avg}^{\pi_{k+1}}$, and procedure converges in finite steps.

Policy Iteration: For a deterministic input policy π_k , first

- solve Poisson's eq'n $\psi^{h^{\pi_k}}(s,\pi_k(s)) = h^{\pi_k}(s) + C^{\pi_k}$ for (h^{π_k},C^{π_k})
- check if $\max_a \psi^{h^{\pi_k}}(s,a) = h^{\pi_k}(s) + \mathcal{C}^{\pi_k} \quad \forall \, s \in \mathcal{S}$
- if not, define updated policy $\pi_{k+1}(s) = \arg \max_a \psi^{h^{\pi_k}}(s, a)$

Claim: $v_{avg}^{\pi_k} < v_{avg}^{\pi_{k+1}}$, and procedure converges in finite steps.

 $v_{ t avg}^{\pi_k} = C^{\pi_k}$

Policy Iteration: For a deterministic input policy π_k , first

- solve Poisson's eq'n $\psi^{h^{\pi_k}}(s,\pi_k(s)) = h^{\pi_k}(s) + C^{\pi_k}$ for (h^{π_k},C^{π_k})
- check if $\max_a \psi^{h^{\pi_k}}(s,a) = h^{\pi_k}(s) + \mathcal{C}^{\pi_k} \quad \forall \, s \in \mathcal{S}$
- if not, define updated policy $\pi_{k+1}(s) = \arg \max_a \psi^{h^{\pi_k}}(s, a)$

$$v_{ ext{avg}}^{\pi_k} = \mathcal{C}^{\pi_k} = \sum_s \mu^{\pi_{k+1}}(s) \mathcal{C}^{\pi_k}$$

Policy Iteration: For a deterministic input policy π_k , first

- solve Poisson's eq'n $\psi^{h^{\pi_k}}(s,\pi_k(s)) = h^{\pi_k}(s) + C^{\pi_k}$ for (h^{π_k}, C^{π_k})
- check if $\max_a \psi^{h^{\pi_k}}(s,a) = h^{\pi_k}(s) + \mathcal{C}^{\pi_k} \quad \forall s \in \mathcal{S}$
- if not, define updated policy $\pi_{k+1}(s) = \arg \max_a \psi^{h^{\pi_k}}(s, a)$

$$\begin{aligned} v_{\text{avg}}^{\pi_{k}} &= C^{\pi_{k}} = \sum_{s} \mu^{\pi_{k+1}}(s) C^{\pi_{k}} \\ &< \sum_{s} \mu^{\pi_{k+1}}(s) \left[\psi^{\pi_{k}}(s, \pi_{k+1}(s)) - h^{\pi_{k}}(s) \right] \end{aligned}$$

Policy Iteration: For a deterministic input policy π_k , first

- solve Poisson's eq'n $\psi^{h^{\pi_k}}(s,\pi_k(s)) = h^{\pi_k}(s) + C^{\pi_k}$ for (h^{π_k},C^{π_k})
- check if $\max_a \psi^{h^{\pi_k}}(s,a) = h^{\pi_k}(s) + \mathcal{C}^{\pi_k} \quad \forall \, s \in \mathcal{S}$
- if not, define updated policy $\pi_{k+1}(s) = \arg \max_a \psi^{h^{\pi_k}}(s, a)$

$$\begin{aligned} v_{\text{avg}}^{\pi_{k}} &= C^{\pi_{k}} = \sum_{s} \mu^{\pi_{k+1}}(s) C^{\pi_{k}} \\ &< \sum_{s} \mu^{\pi_{k+1}}(s) \left[\psi^{\pi_{k}}(s, \pi_{k+1}(s)) - h^{\pi_{k}}(s) \right] \\ &= \sum_{s}^{s} \mu^{\pi_{k+1}}(s) \left[\mathbf{r}_{s, \pi_{k+1}(s)} + \sum_{s'} \mathbf{P}_{(s, \pi_{k+1}(s)), s'} h^{\pi_{k}}(s') - h^{\pi_{k}}(s) \right] \end{aligned}$$

Policy Iteration: For a deterministic input policy π_k , first

- solve Poisson's eq'n $\psi^{h^{\pi_k}}(s,\pi_k(s)) = h^{\pi_k}(s) + C^{\pi_k}$ for (h^{π_k},C^{π_k})
- check if $\max_a \psi^{h^{\pi_k}}(s,a) = h^{\pi_k}(s) + \mathcal{C}^{\pi_k} \quad \forall \, s \in \mathcal{S}$
- if not, define updated policy $\pi_{k+1}(s) = \arg \max_a \psi^{h^{\pi_k}}(s, a)$

$$\begin{aligned} v_{\text{avg}}^{\pi_{k}} &= C^{\pi_{k}} = \sum_{s} \mu^{\pi_{k+1}}(s) C^{\pi_{k}} \\ &< \sum_{s} \mu^{\pi_{k+1}}(s) \left[\psi^{\pi_{k}}(s, \pi_{k+1}(s)) - h^{\pi_{k}}(s) \right] \\ &= \sum_{s}^{s} \mu^{\pi_{k+1}}(s) \left[\mathbf{r}_{s, \pi_{k+1}(s)} + \sum_{s'} \mathbf{P}_{(s, \pi_{k+1}(s)), s'} h^{\pi_{k}}(s') - h^{\pi_{k}}(s) \right] \\ &= v_{\text{avg}}^{\pi_{k+1}} + \sum_{s} \left(\sum_{s'} \mu^{\pi_{k+1}}(s) \mathbf{P}_{(s, \pi_{k+1}(s)), s'} h^{\pi_{k}}(s') - \mu^{\pi_{k+1}}(s) h^{\pi_{k}}(s) \right) \end{aligned}$$

Policy Iteration: For a deterministic input policy π_k , first

- solve Poisson's eq'n $\psi^{h^{\pi_k}}(s,\pi_k(s)) = h^{\pi_k}(s) + C^{\pi_k}$ for (h^{π_k},C^{π_k})
- check if $\max_a \psi^{h^{\pi_k}}(s,a) = h^{\pi_k}(s) + \mathcal{C}^{\pi_k} \quad \forall \, s \in \mathcal{S}$
- if not, define updated policy $\pi_{k+1}(s) = \arg \max_a \psi^{h^{\pi_k}}(s, a)$

Claim: $v_{avg}^{\pi_k} < v_{avg}^{\pi_{k+1}}$, and procedure converges in finite steps.

$$\begin{aligned} v_{\text{avg}}^{\pi_{k}} &= C^{\pi_{k}} = \sum_{s} \mu^{\pi_{k+1}}(s) C^{\pi_{k}} \\ &< \sum_{s} \mu^{\pi_{k+1}}(s) \left[\psi^{\pi_{k}}(s, \pi_{k+1}(s)) - h^{\pi_{k}}(s) \right] \\ &= \sum_{s}^{s} \mu^{\pi_{k+1}}(s) \left[\mathbf{r}_{s, \pi_{k+1}(s)} + \sum_{s'} \mathbf{P}_{(s, \pi_{k+1}(s)), s'} h^{\pi_{k}}(s') - h^{\pi_{k}}(s) \right] \\ &= v_{\text{avg}}^{\pi_{k+1}} + \sum_{s} \left(\sum_{s'} \mu^{\pi_{k+1}}(s) \mathbf{P}_{(s, \pi_{k+1}(s)), s'} h^{\pi_{k}}(s') - \mu^{\pi_{k+1}}(s) h^{\pi_{k}}(s) \right) \end{aligned}$$

 $= v_{ t avg}^{\pi_{k+1}}$

Discussion

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

• Main computational burden is solving Poisson's equations.

- Main computational burden is solving Poisson's equations.
- We haven't used reversibility yet.

- Main computational burden is solving Poisson's equations.
- We haven't used reversibility yet.
- Reversibility leads to a simplified policy iteration.

Theorem (Anantharam, 2022)

Theorem (Anantharam, 2022)

Consider a reversible MDP M, whose canonical graph G is bi-connected.

Theorem (Anantharam, 2022)

Consider a reversible MDP \mathcal{M} , whose canonical graph \mathcal{G} is bi-connected. Let \mathbf{Q} and $\rho : \mathcal{S} \times \mathcal{A} \rightarrow (0, 1]$ be as guaranteed.

Theorem (Anantharam, 2022)

Consider a reversible MDP \mathcal{M} , whose canonical graph \mathcal{G} is bi-connected. Let \mathbf{Q} and $\rho : S \times \mathcal{A} \rightarrow (0,1]$ be as guaranteed. Consider the following iterative procedure.

Theorem (Anantharam, 2022)

Consider a reversible MDP \mathcal{M} , whose canonical graph \mathcal{G} is bi-connected. Let \mathbf{Q} and $\rho : S \times \mathcal{A} \rightarrow (0, 1]$ be as guaranteed. Consider the following iterative procedure.

Let some initial $\pi_0 \in \prod_{det}$. For $k = 0, 1, 2 \dots$

Theorem (Anantharam, 2022)

Consider a reversible MDP \mathcal{M} , whose canonical graph \mathcal{G} is bi-connected. Let \mathbf{Q} and $\rho : S \times \mathcal{A} \rightarrow (0,1]$ be as guaranteed. Consider the following iterative procedure.

Let some initial $\pi_0 \in \Pi_{det}$. For $k = 0, 1, 2 \dots$

• For π_k compute C^{π_k} .

Theorem (Anantharam, 2022)

Consider a reversible MDP \mathcal{M} , whose canonical graph \mathcal{G} is bi-connected. Let \mathbf{Q} and $\rho : S \times \mathcal{A} \rightarrow (0,1]$ be as guaranteed. Consider the following iterative procedure.

Let some initial $\pi_0 \in \Pi_{det}$. For $k = 0, 1, 2 \dots$

- For π_k compute C^{π_k} .
- **2** If \exists s such that

$$\frac{\mathsf{r}_{(s,\pi_k(s))}-C^{\pi_k}}{\rho(s,\pi_k(s)))} < \arg\max_{\mathsf{a}} \frac{\mathsf{r}_{(s,\mathsf{a})}-C^{\pi_k}}{\rho(s,\mathsf{a})}$$

Let a_s denote argmax.

(1)

Theorem (Anantharam, 2022)

Consider a reversible MDP \mathcal{M} , whose canonical graph \mathcal{G} is bi-connected. Let \mathbf{Q} and $\rho : S \times \mathcal{A} \rightarrow (0,1]$ be as guaranteed. Consider the following iterative procedure.

Let some initial $\pi_0 \in \Pi_{det}$. For $k = 0, 1, 2 \dots$

- For π_k compute C^{π_k} .
- **2** If \exists s such that

$$\frac{\mathbf{r}_{(s,\pi_k(s))} - C^{\pi_k}}{\rho(s,\pi_k(s)))} < \arg\max_{a} \frac{\mathbf{r}_{(s,a)} - C^{\pi_k}}{\rho(s,a)} \tag{1}$$

Let a_s denote argmax. Set $\pi_{k+1}(s) = a_s$, and $\pi_{k+1}(s') = \pi_k(s')$ for $s' \neq s$. If no such s, terminate.

Theorem (Anantharam, 2022)

Consider a reversible MDP \mathcal{M} , whose canonical graph \mathcal{G} is bi-connected. Let \mathbf{Q} and $\rho : S \times \mathcal{A} \rightarrow (0,1]$ be as guaranteed. Consider the following iterative procedure.

Let some initial $\pi_0 \in \Pi_{det}$. For $k = 0, 1, 2 \dots$

• For
$$\pi_k$$
 compute C^{π_k} .

2 If \exists s such that

$$\frac{\mathbf{r}_{(s,\pi_k(s))} - C^{\pi_k}}{\rho(s,\pi_k(s)))} < \arg\max_{a} \frac{\mathbf{r}_{(s,a)} - C^{\pi_k}}{\rho(s,a)}$$
(1)

Let a_s denote argmax. Set $\pi_{k+1}(s) = a_s$, and $\pi_{k+1}(s') = \pi_k(s')$ for $s' \neq s$. If no such s, terminate.

Then $v_{avg}^{\pi_k} < v_{avg}^{\pi_{k+1}}$, and procedure converges in finite steps to an opt. policy.

Proof?

<ロ> <四> <四> <豆> <日> <日> <日> <日> <日> <日> <日> <日> <日< <日 <日< <日 <10 <</p>

Main Takeaways

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへの

• Policy gain is an alternative objective function for policy opt.

- Policy gain is an alternative objective function for policy opt.
- Optimizing gain for MDPs seems quite tough

- Policy gain is an alternative objective function for policy opt.
- Optimizing gain for MDPs seems quite tough
 - Dual formulation led to algorithm requiring $\mathcal{O}(|S|)$ linear system solver

- Policy gain is an alternative objective function for policy opt.
- Optimizing gain for MDPs seems quite tough
 - Dual formulation led to algorithm requiring $\mathcal{O}(|S|)$ linear system solver
- Under reversibility + a little more, could get a better algorithm

- Policy gain is an alternative objective function for policy opt.
- Optimizing gain for MDPs seems quite tough
 - Dual formulation led to algorithm requiring $\mathcal{O}(|S|)$ linear system solver
- Under reversibility + a little more, could get a better algorithm
 - No linear system solving!

- Policy gain is an alternative objective function for policy opt.
- Optimizing gain for MDPs seems quite tough
 - Dual formulation led to algorithm requiring $\mathcal{O}(|S|)$ linear system solver
- Under reversibility + a little more, could get a better algorithm
 - No linear system solving!
- Future Directions:

- Policy gain is an alternative objective function for policy opt.
- Optimizing gain for MDPs seems quite tough
 - Dual formulation led to algorithm requiring $\mathcal{O}(|S|)$ linear system solver
- Under reversibility + a little more, could get a better algorithm
 - No linear system solving!

• Finite time bounds for ϵ -approximation of opt. policy? Lower bounds without reversibility? Upper bounds with?

- Policy gain is an alternative objective function for policy opt.
- Optimizing gain for MDPs seems quite tough
 - Dual formulation led to algorithm requiring $\mathcal{O}(|S|)$ linear system solver
- Under reversibility + a little more, could get a better algorithm
 - No linear system solving!

- Finite time bounds for ϵ -approximation of opt. policy? Lower bounds without reversibility? Upper bounds with?
- RL version—transition dynamics unknown prior, (ϵ,δ) guarantees...

- Policy gain is an alternative objective function for policy opt.
- Optimizing gain for MDPs seems quite tough
 - Dual formulation led to algorithm requiring $\mathcal{O}(|S|)$ linear system solver
- Under reversibility + a little more, could get a better algorithm
 - No linear system solving!

- Finite time bounds for ϵ -approximation of opt. policy? Lower bounds without reversibility? Upper bounds with?
- RL version—transition dynamics unknown prior, (ϵ, δ) guarantees... Avg. reward RL still an active area of research!

- Policy gain is an alternative objective function for policy opt.
- Optimizing gain for MDPs seems quite tough
 - Dual formulation led to algorithm requiring $\mathcal{O}(|S|)$ linear system solver
- Under reversibility + a little more, could get a better algorithm
 - No linear system solving!

- Finite time bounds for ϵ -approximation of opt. policy? Lower bounds without reversibility? Upper bounds with?
- RL version—transition dynamics unknown prior, (ϵ, δ) guarantees... Avg. reward RL still an active area of research!
- $\bullet\,$ Learnability—identification of irreducible or reversible MDP, learnibility of ρ

Thanks!

- Ross, S. M. "Introduction to Stochastic Dynamic Programming, 1983."
- Cogill, Randy, and Cheng Peng. "Reversible Markov decision processes with an average-reward criterion." SIAM Journal on Control and Optimization 51.1 (2013): 402-418.
- Puterman, Martin L. Markov decision processes: discrete stochastic dynamic programming. John Wiley and Sons, 2014.
- Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
- Anantharam, Venkat. "Reversible Markov decision processes and the Gaussian free field." Systems and Control Letters 169 (2022): 105382.