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Objectives

main takeaways
@ cake-cutting : a fundamental model of fair division
@ many open problems, some longstanding

© "can we efficiently compute envy-free allocations?”
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What is cake-cutting?

question: how can we fairly divide a cake amongst people?

@ or heterogenous, divisible good
e value perceived individually
e can "chop it up”

@ cake : represented by [0, 1]

© people : n agents
@ value : measures g ... p {
{ e

o ui([0.1]) = 1
e non-atomic :
e dom. by Lebesgue

© allocation : subsets to players W, W, W, w, W, g.

O fairness : many notions Figure: Example instance and allocation. Yum.
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A Notion of Fairness
giving player i piece W;, the allocation is:

@ proportional if for all i
wi(Wy) = 1/n

"everyone believes they have proportional slice”
o (exact!) equitable if for all i # j

wi(Wi) = (W)

"everyone equally satisfied”

o (exact) envy-free if for all i # j
wi(Wi) > pi(W)

"every player believes they have the biggest piece”

Loften these notions admit an e relaxation in the additive sense
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A Notion of Efficiency

how to characterize efficiency?
@ say alg. gets preferences via questions

o efficient alg. asks few questions as possible

Robertson-Webb Query Model [Woeginger-Sgall '07]

e Eval(i,x,y) : get ui([x,y])
o Cut(i,x,a) : get threshold y such that ju;([x,y]) =

query complexity
@ # queries needed to compute fair allocation

@ care about bounds in n
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Known Results

@ proportional :
e O(nlogn) [Even-Paz '84, Edmonds-Pruhs '06, Woeginger-Sgall '07]
@ equitable:

o connected and exact == 7 algorithm [Cechlarova-Pillarova '12]
o connected and e-equitable = O(nlog ”) [Cechlarova-Pillarova '12]

o e-equitable! = Q(Iog’iél) [Procaccia-Wang '17]

o envy-free:
o connected and e-envy-free = O(”) and Q(log 1) [Branzei-Nisan '18]
o exact = O(n 11 6) and Q(n?) [Aziz-Mackenzie '16, Procaccia '09]
e exact and extra assumptions = n°() [Cheze '21, Webb, '99]

focus of this talk: computing envy-free allocations

strengthens Cechlarova-Pillarova to allow " crumbs”
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Overview

@ setting + known results v’

@ envy-free for n = 2,3, 4.

@ Aziz and Mackenzie (O(n 11 6))

@ Webb's Algorithm & Chéze's Result (n°(1)
O strengthening Chéze's
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Examples and Some History of Cake Cutting Algorithms

@ Origins of “Cake Cutting”
@ n=2: The Cut and Choose Algorithm [The Bible?]
e n = 3: Selfridge-Conway Procedure [Selfridge, Conway '60]
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Origins of “Cake Cutting”

@ Term introduced in the 1940's by Hugo Steinhaus to make the idea of
fair division more tangible

@ Steinhaus and his colleagues, Knaster and Banach introduced the
notion of envy-freeness and worked to develop protocols for
proportional divisions on n agents

@ Were aware of the cut and choose protocol but could not extend it to
n=3.
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n = 2: Cut and Choose

Players A and B

Pretty Old! Appears in the Bible as a way to divide land.

1

2

(]

Step 2: B chooses the piece they would like and A gets the other.

1

2

This algorithm is envy free!

A recurring idea in cake cutting: " The person who cuts is fine with
getting any of the pieces they cut”

@ In the RW model, this takes 3 queries. One Cut query
(cut(1,0,1/2)) and two eval queries (eval(2,0, x), eval(2, x, 1))

Step 1: A cuts the cake into two pieces they think are “equal value”
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n = 2: Cut and Choose

o Note that this and the other protocols we discuss are envy-free
protocols. This means that if an agent is truthful about their query
responses, then they are guaranteed to have an envy-free
allocation.

@ Envy-free protocol = strategy-proof!

o If agents know the valuations of others, they may be able to obtain a
“better” allocation.

@ However, an agent deviating from truthful reporting can only make
themselves envious and does not affect the envy-free-ness of
truthful agents so we will assume truthful reporting for the
remainder of the presentation.
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n = 2: Cut and Choose

6 K {

Player 1: True Valuation Cut Player 1: False Valuation Cut
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n = 3: Selfridge—Conway Procedure

@ Independently discovered by John Conway and John Selfridge in
the 60's

o Let the agents be A, B, and C
@ Step 1: A cuts the cake into 3 “equal” pieces
o A would be happy with any whole piece, i.e. (1) = pa(2) = 1a(3)
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n = 3: Selfridge—Conway Procedure

@ Step 2: Let B and C pick their favorite pieces of the 3
o If they choose different pieces, we are done

@ Step 3: WLOG they both want piece 1, then B “trims” piece 1 so

that the trimmed piece is equal in value to their second favorite
piece. (WLOG suppose (1) = ug(2) here)

/‘\Res:eloe“

S

3

@ Step 4: Separate the residue from the cake and have the players
choose their pieces from the rest of the cake in the order:

C - B— A

e * If C picks 3, then B must pick 1’

\

4

L 3
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n = 3: Selfridge—Conway Procedure

o Claim: The current partial allocation is envy free!
o C picked first so they got the best piece in their eyes
o B is guaranteed a piece they said was most valuable to them ('1 or 2)
o A cut the pieces originally and is guaranteed a “whole” piece
@ It remains to allocate the residue. Suppose WLOG B got 1' in the
partial allocation (otherwise swap roles of B and C from here on).

e Note: A does not care if B (player who got the trimmed piece)
gets the entire residue. We say A “dominates” B.
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n = 3: Selfridge—Conway Procedure

@ Step 5: To allocate the residue: C cuts the cake into three “equal”
pieces, B picks, A, picks and then C picks.

!

\

!

W

’
‘3

B thinks they got the best piece

A doesn't care what B got but thinks they got a better piece than C
C is equally happy with any piece

The total allocation is envy-free!

Z

3

L

allocation

In the worse case, we need 15 RW queries to achieve an envy-free
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n> 47

“We figured out n = 3, surely n = 4 can’t be that bad right?”

n > 4 was considered a major open problem in mathematics

A major breakthrough in 1995 with The first algorithm for any n
[Brams and Taylor '95].
o While guaranteed to terminate, the number of cuts was dependent on
the valuation functions of the agents
e For any constant ¢, you can find valuation functions even with n = 4
to make the number of cuts in the protocol exceed ¢

Does there exist a bounded protocol for n > 47

The first algorithm (with bounded complexity) for n = 4 [Aziz and
Mackenzie '16]

Later generalized to any n [Aziz and Mackenzie '17]

Recently n = 4 envy-freeness was shown to be achievable in fewer
than 200 queries. [Amanatidis et al. '18]
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First Envy Free With Bounded Query
Complexity,[Aziz-Mackenzie '17]

o First bounded protocol for general number of agents n

nn

@ But it might take a while (’)(n”nn ) -

@ At a high-level the protocol works to find envy-free partial
allocations in which a subset of players dominates the rest.

o We can then remove these players and work on a smaller subproblem
@ A key novel idea is to allow players to swap portions of their
allocated cake to achieve a domination. Kick out the dominating
players and solve smaller instance.
@ The entire protocol is very complex. The runtime is due to many
iterations looking over permutations of players, over permutations of
allocations, etc.

s -



Overview

@ setting + known results v’

@ envy-free for n = 2,3, 4, Aziz and Mackenzie (O(n 171 6)) v/
© Webb's Algorithm & Chéze's Result (n°(%)

@ strengthening Chéze's
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Webb's Envy-Free Algorithm (1/8)

computes envy-free in n®(1) under assumptions

strategy:
@ guess a partition
@ subdivide each into n pieces

@ give each player a union of pieces
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Webb's Envy-Free Algorithm (2/8)

@ specifically, allocate

AC‘EMTI & WI’ Wl’ Wl\‘ "'(Wnl

Aceure < (I
Acenrn e— [T ]

@ ... such that division is envy-free
[mamE]
/Al ([ W, W;'ZW;‘{-/WJ ) > //(( ( ;ﬁ;rj )
Av mengal =5
(=4 //12( | > (ULZ ( r J

AU -
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Webb's Envy-Free Algorithm (3/8)
suffices to get "super envy-free” allocation, i.e.

; ; : >1/n j=1i
(Wi + W4y = 3 T
<1/n j#i

why doable?

Theorem (Barbanel, '96)

A super envy-free subdivision of W C [0, 1] exists iff j11 ..., are linearly
independent measures, i.e. Y cjuj = 0 only for the trivial C.

(assuming linearly independence throughout)

suffices for § > 0 that

;“’(Wk) {1/n—6/(n1) ji
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Webb's Envy-Free Algorithm (4/8)

wi(WY)

;:UJI(WJ ZMI Wk Wk)
= Z,u,,' Wk) . RkJJ note Z Rk,j,i = 1)
k J

suppose for all i # i, Ry j i = Ry j.ir
"all agents believe Wl{/Wk the same”
then have

> pi(We) - Riej =
k

{1/n-|—6 j=i
1/n=6/(n—1) j#i
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Webb's Envy-Free Algorithm (5/8)

_J1/n+d j=i
;“'(Wk)'%_{l/n—a/(nl) j#i

i.e.
Y 0
p(Wa) oo (W) TRt =
5 -
:U’2(W1) ,U2(Wn) R — %_ﬁ % ) %—%
0 9 N
pn(Wa) . pn(Wh) %*ﬁ %*ﬁ %+()
M Ns

(pick d so R row stochastic and nonnegative)

] 2437



Webb's Envy-Free Algorithm (6/8)

if M invertible, we can:

e compute R = M~IN;

@ subproblem: chop Wi ... W, so that Ry; = %

@ these pieces will be satisfy what we want
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Webb's Envy-Free Algorithm (7/8)

. " . _ Hi(Wj)n
solving "subproblem: chop W; ... W, so that Ry; = TW:) ?
Definition
A partition W = Wl L ... U W" is e-exact for fractions (au,...,a,) if
] IU’I(WJ) ” . / "
Vi, ~. a; "all agents believe W’ /W roughly «;
T a(wy) e / /

Theorem (Robertson-Webb, '04)

There'’s an algorithm NearEzact(W,d,€) which outputs an e-exact
partition W = Wy U --- U W, in O(n*5/€) queries.

o call for each W,
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Webb's Envy-Free Algorithm (8/8)

Webb's Envy-Free Algorithm (1999)

Q starting partition [0,1] = Wi LU --- U W,

Q@ Mj; = p;i(W;), stop if not invertible > O(n?) queries
© t:= minentry of M7, § = n(an)
Ry
Q compute M~INs =R =
R»
© V pieces, get NearExact( Wy, Rk, <) > O(n*5|t]) queries

O allocate: agent i gets W{ LI W5 LI--- U W,
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Recap of Webb's

what did we show?
Theorem (Webb, '99)

If i; linearly independent and M nonsingular for starting partition, then
Webb's returns a (super) envy-free allocation in O(n*5 - k(M)) queries.

@ this for existence of super envy-free division
@ this for correctness

note: (1) = (2)
o efficiently find starting partition?

e checking candidate O(n?), but exponentially many

@ we don’t know satisfying answer
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Chéze's Result

@ notice Webb's is " brittle”

@ we understand random matrices now
@ hit M with one?

Theorem (Chéze '21)

Suppose pj(x) > € everywhere. Let E be random matrix with iid entries in

(—€,€). Then, Webb's ran on the matrix M;; = % uses more than

C.n®W) queries with probability o(%).

o satisfying?

o relationship with final allocation?
e ¢ dependence?
e instances with 0 densities ?

@ smoothed query complexity?
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Overview

@ setting + known results v’

@ envy-free for n = 2,3, 4, Aziz and Mackenzie (O(n 171 6)) v/
© Webb's Algorithm & Chéze's Result (n°(Y)) v

@ strengthening Chéze's
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Towards a Smoothed-Analysis

Recall input to Webb's is i and starting partition, say P

Definition

Fix 0 > 0. For Webb's instance I, p let IZ,P be a random instance:
o G : random matrix iid entries |N(0, o2)|

e fii(x) = mm;(x) + (A;,J) for x € P;

Q

I

Figure: Some realizations of instance perturbation
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Towards a Smoothed-Analysis

Conjecture (smoothed query complexity of Webb's)
Fix o > 0. Denoting Q(-) = # queries by Webb's,

poly(n)
rInaXEINIZ,P [Q)] =0 ( e )

w,P

@ i.e. the o-smoothed query complexity is not bad
o linear independence doesn’t matter anymore (satisfied w.p. 1).

@ what can we prove today?
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Towards a Smoothed-Analysis

we can "almost” prove:

Conjecture ("two-draw" smoothed query complexity of Webb's)
Fix o € (0,1/n). Denoting Q(-) = # queries by Webb's,

max Erp~g [min{Q(I), Q(I')}] = O <£>

w,P o2

next: what we have, and what we need

33/37



What we have

Recall Webb's runtime O(n*® - k(M)

In perturbation, deal with Mg := D ( M + G)

renormalize orig. matrix  shifts
w, P

Claim (this work)
For any instance i, P giving rise to M, and
o G : random matrix with iid N'(0,0?) entries
Then,
n

E[min{x(Mg), H(MG/)}] =0 (?)

@ not our perturbation model (these might "sign” measures)
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What we need

if this true then our "two-draw” conjecture follows

Conjecture
o G : random matrix iid entries N'(0, o2)
o G : random matrix iid entries |N'(0, 52)|

Then, for any square (nonnegative row stochastic) M, we have

E[+(M¢)] < O(poly(n,0 ™)) - E[x(Mg)]

@ stability of our perturbation model isn't "much worse” than gaussian
@ intuitive - models pretty similar

@ numerically supported
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Overview

@ setting + known results v’

@ envy-free for n = 2,3, 4, Aziz and Mackenzie (O(n 171 6)) v/
© Webb's Algorithm & Chéze's Result (n°(Y)) v

@ strengthening Chéze's v/
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Takeaways

@ cake-cutting is NOT a piece of cake!
o envy-freeness
e important and interesting fairness criterion
o historically restricted to small n
o evidently tractable for "real” inputs
@ very active field, trying to bring the complexity down so that we can
get to enjoying our cake!
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