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Objectives

main takeaways

1 cake-cutting : a fundamental model of fair division

2 many open problems, some longstanding

3 ”can we efficiently compute envy-free allocations?”
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What is cake-cutting?

question: how can we fairly divide a cake amongst people?

1 or heterogenous, divisible good

value perceived individually
can ”chop it up”

2 cake : represented by [0, 1]

3 people : n agents
4 value : measures µ1 . . . µn

µi ([0, 1]) = 1
non-atomic
dom. by Lebesgue

5 allocation : subsets to players

6 fairness : many notions
Figure: Example instance and allocation. Yum.
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A Notion of Fairness

giving player i piece Wi , the allocation is:

proportional if for all i
µi (Wi ) ≥ 1/n

”everyone believes they have proportional slice”

(exact1) equitable if for all i ̸= j

µi (Wi ) = µj(Wj)

”everyone equally satisfied”

(exact) envy-free if for all i ̸= j

µi (Wi ) ≥ µi (Wj)

”every player believes they have the biggest piece”

1often these notions admit an ϵ relaxation in the additive sense
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A Notion of Efficiency

how to characterize efficiency?

say alg. gets preferences via questions

efficient alg. asks few questions as possible

Robertson-Webb Query Model [Woeginger-Sgall ’07]

Eval(i , x , y) : get µi ([x , y ])

Cut(i , x , α) : get threshold y such that µi ([x , y ]) = α

query complexity

# queries needed to compute fair allocation

care about bounds in n
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Known Results

proportional :

Θ(n log n) [Even-Paz ’84, Edmonds-Pruhs ’06, Woeginger-Sgall ’07]

equitable:

connected and exact =⇒ ∄ algorithm [Cechlarova-Pillarova ’12]
connected and ϵ-equitable =⇒ O(n log n

ϵ ) [Cechlarova-Pillarova ’12]

ϵ-equitable1 =⇒ Ω(
log 1

ϵ

log log 1
ϵ

) [Procaccia-Wang ’17]

envy-free:

connected and ϵ-envy-free =⇒ O( nϵ ) and Ω(log 1
ϵ ) [Brânzei-Nisan ’18]

exact =⇒ O(n ↑↑ 6) and Ω(n2) [Aziz-Mackenzie ’16, Procaccia ’09]
exact and extra assumptions =⇒ nO(1) [Chèze ’21, Webb, ’99]

focus of this talk: computing envy-free allocations

1strengthens Cechlarova-Pillarova to allow ”crumbs”
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Overview

1 setting + known results ✓
2 envy-free for n = 2, 3, 4.

3 Aziz and Mackenzie (O(n ↑↑ 6))

4 Webb’s Algorithm & Chéze’s Result (nO(1))

5 strengthening Chéze’s
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Examples and Some History of Cake Cutting Algorithms

Origins of “Cake Cutting”

n = 2: The Cut and Choose Algorithm [The Bible?]

n = 3: Selfridge–Conway Procedure [Selfridge, Conway ’60]
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Origins of “Cake Cutting”

Term introduced in the 1940’s by Hugo Steinhaus to make the idea of
fair division more tangible

Steinhaus and his colleagues, Knaster and Banach introduced the
notion of envy-freeness and worked to develop protocols for
proportional divisions on n agents

Were aware of the cut and choose protocol but could not extend it to
n = 3.

9 / 37



n = 2: Cut and Choose

Pretty Old! Appears in the Bible as a way to divide land.

Players A and B

Step 1: A cuts the cake into two pieces they think are “equal value”

Step 2: B chooses the piece they would like and A gets the other.

This algorithm is envy free!

A recurring idea in cake cutting: ”The person who cuts is fine with
getting any of the pieces they cut”

In the RW model, this takes 3 queries. One Cut query
(cut(1, 0, 1/2)) and two eval queries (eval(2, 0, x), eval(2, x , 1))
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n = 2: Cut and Choose

Note that this and the other protocols we discuss are envy-free
protocols. This means that if an agent is truthful about their query
responses, then they are guaranteed to have an envy-free
allocation.

Envy-free protocol ⇏ strategy-proof!

If agents know the valuations of others, they may be able to obtain a
“better” allocation.

However, an agent deviating from truthful reporting can only make
themselves envious and does not affect the envy-free-ness of
truthful agents so we will assume truthful reporting for the
remainder of the presentation.
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n = 2: Cut and Choose

Player 1: True Valuation Cut Player 1: False Valuation Cut
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n = 3: Selfridge–Conway Procedure

Independently discovered by John Conway and John Selfridge in
the 60’s

Let the agents be A, B, and C

Step 1: A cuts the cake into 3 “equal” pieces

A would be happy with any whole piece, i.e. µA(1) = µA(2) = µA(3)
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n = 3: Selfridge–Conway Procedure

Step 2: Let B and C pick their favorite pieces of the 3

If they choose different pieces, we are done

Step 3: WLOG they both want piece 1, then B “trims” piece 1 so
that the trimmed piece is equal in value to their second favorite
piece. (WLOG suppose µB(1

′) = µB(2) here)

Step 4: Separate the residue from the cake and have the players
choose their pieces from the rest of the cake in the order:
C → B → A.

* If C picks 3, then B must pick 1’
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n = 3: Selfridge–Conway Procedure

Claim: The current partial allocation is envy free!
C picked first so they got the best piece in their eyes
B is guaranteed a piece they said was most valuable to them (’1 or 2)
A cut the pieces originally and is guaranteed a “whole” piece

It remains to allocate the residue. Suppose WLOG B got 1’ in the
partial allocation (otherwise swap roles of B and C from here on).

Note: A does not care if B (player who got the trimmed piece)
gets the entire residue. We say A “dominates” B.
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n = 3: Selfridge–Conway Procedure

Step 5: To allocate the residue: C cuts the cake into three “equal”
pieces, B picks, A, picks and then C picks.

B thinks they got the best piece
A doesn’t care what B got but thinks they got a better piece than C
C is equally happy with any piece
The total allocation is envy-free!

In the worse case, we need 15 RW queries to achieve an envy-free
allocation
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n ≥ 4?

“We figured out n = 3, surely n = 4 can’t be that bad right?”

n ≥ 4 was considered a major open problem in mathematics

A major breakthrough in 1995 with The first algorithm for any n
[Brams and Taylor ’95].

While guaranteed to terminate, the number of cuts was dependent on
the valuation functions of the agents
For any constant c , you can find valuation functions even with n = 4
to make the number of cuts in the protocol exceed c

Does there exist a bounded protocol for n ≥ 4?

The first algorithm (with bounded complexity) for n = 4 [Aziz and
Mackenzie ’16]

Later generalized to any n [Aziz and Mackenzie ’17]

Recently n = 4 envy-freeness was shown to be achievable in fewer
than 200 queries. [Amanatidis et al. ’18]
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First Envy Free With Bounded Query
Complexity,[Aziz-Mackenzie ’17]

First bounded protocol for general number of agents n

But it might take a while O(nn
nn

nn

) ...

At a high-level the protocol works to find envy-free partial
allocations in which a subset of players dominates the rest.

We can then remove these players and work on a smaller subproblem

A key novel idea is to allow players to swap portions of their
allocated cake to achieve a domination. Kick out the dominating
players and solve smaller instance.

The entire protocol is very complex. The runtime is due to many
iterations looking over permutations of players, over permutations of
allocations, etc.
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Overview

1 setting + known results ✓
2 envy-free for n = 2, 3, 4, Aziz and Mackenzie (O(n ↑↑ 6)) ✓
3 Webb’s Algorithm & Chéze’s Result (nO(1))

4 strengthening Chéze’s
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Webb’s Envy-Free Algorithm (1/8)

computes envy-free in nO(1) under assumptions

strategy:

guess a partition

subdivide each into n pieces

give each player a union of pieces

20 / 37



Webb’s Envy-Free Algorithm (2/8)

specifically, allocate

... such that division is envy-free
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Webb’s Envy-Free Algorithm (3/8)

suffices to get ”super envy-free” allocation, i.e.

µi (W
j
1 +W j

2 + · · ·+W j
n) =

{
> 1/n j = i

< 1/n j ̸= i

why doable?

Theorem (Barbanel, ’96)

A super envy-free subdivision of W ⊆ [0, 1] exists iff µ1 . . . µn are linearly
independent measures, i.e.

∑
ciµi = 0 only for the trivial c⃗ .

(assuming linearly independence throughout)

suffices for δ > 0 that∑
k

µi (W
j
k) =

{
1/n + δ j = i

1/n − δ/(n − 1) j ̸= i
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Webb’s Envy-Free Algorithm (4/8)

∑
k

µi (W
j
k) =

∑
k

µi (Wk) ·
µi (W

j
k)

µi (Wk)

:=
∑
k

µi (Wk) · Rk,j ,i (note
∑
j

Rk,j ,i = 1)

suppose for all i ̸= i ′,Rk,j ,i = Rk,j ,i ′

”all agents believe W j
k/Wk the same”

then have

∑
k

µi (Wk) · Rk,j =

{
1/n + δ j = i

1/n − δ/(n − 1) j ̸= i
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Webb’s Envy-Free Algorithm (5/8)

∑
k

µi (Wk) · Rk,j =

{
1/n + δ j = i

1/n − δ/(n − 1) j ̸= i

i.e.
µ1(W1) . . . µ1(Wn)

µ2(W1) . . . µ2(Wn)
...

. . .
...

µn(W1) . . . µn(Wn)


︸ ︷︷ ︸

M

R =


1
n+δ 1

n−
δ

n−1 . . . 1
n−

δ
n−1

1
n−

δ
n−1

1
n+δ . . . 1

n−
δ

n−1
...

...
. . .

...
1
n−

δ
n−1

1
n−

δ
n−1 . . . 1

n+δ


︸ ︷︷ ︸

Nδ

(pick δ so R row stochastic and nonnegative)
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Webb’s Envy-Free Algorithm (6/8)

if M invertible, we can:

compute R = M−1Nδ

subproblem: chop W1 . . .Wn so that Rkj =
µi (W

j
k )

µi (Wk )

these pieces will be satisfy what we want
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Webb’s Envy-Free Algorithm (7/8)

solving ”subproblem: chop W1 . . .Wn so that Rkj =
µi (W

j
k )

µi (Wk )
”?

Definition

A partition W = W 1 ⊔ · · · ⊔W n is ϵ-exact for fractions (α1, . . . , αn) if

∀i , j µi (W
j)

µi (W )
≈ϵ αj ”all agents believe W j/W roughly αj”

Theorem (Robertson-Webb, ’04)

There’s an algorithm NearExact(W , α⃗, ϵ) which outputs an ϵ-exact
partition W = W1 ⊔ · · · ⊔Wn in O(n2.5/ϵ) queries.

call for each Wk
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Webb’s Envy-Free Algorithm (8/8)

Webb’s Envy-Free Algorithm (1999)

1 starting partition [0, 1] = W1 ⊔ · · · ⊔Wn

2 Mij = µi (Wj), stop if not invertible ▷O(n2) queries

3 t := min entry of M−1, δ = n−1
n(1−tn)

4 compute M−1Nδ = R =


R⃗1

...

R⃗n


5 ∀ pieces, get NearExact(Wk , R⃗k ,

δ
3n ) ▷O(n4.5|t|) queries

6 allocate: agent i gets W i
1 ⊔W i

2 ⊔ · · · ⊔W i
n
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Recap of Webb’s

what did we show?

Theorem (Webb, ’99)

If µi linearly independent and M nonsingular for starting partition, then
Webb’s returns a (super) envy-free allocation in O(n4.5 · κ(M)) queries.

1 this for existence of super envy-free division

2 this for correctness

note: (1) ⇏ (2)

efficiently find starting partition?

checking candidate O(n2), but exponentially many

we don’t know satisfying answer
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Chéze’s Result

notice Webb’s is ”brittle”

we understand random matrices now

hit M with one?

Theorem (Chéze ’21)

Suppose µi (x) > ϵ everywhere. Let E be random matrix with iid entries in

(−ϵ, ϵ). Then, Webb’s ran on the matrix M̃ij =
Mij+Eij∑
j (Mij+Eij )

uses more than

Cϵn
O(1) queries with probability o( 1n ).

satisfying?

relationship with final allocation?
ϵ dependence?
instances with 0 densities ?

smoothed query complexity?
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Overview

1 setting + known results ✓
2 envy-free for n = 2, 3, 4, Aziz and Mackenzie (O(n ↑↑ 6)) ✓
3 Webb’s Algorithm & Chéze’s Result (nO(1)) ✓
4 strengthening Chéze’s
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Towards a Smoothed-Analysis

Recall input to Webb’s is µ and starting partition, say P

Definition

Fix σ > 0. For Webb’s instance Iµ,P let Iσµ,P be a random instance:

Ĝ : random matrix iid entries |N (0, σ2)|
µ̃i (x) =

1
µ̃i ([0,1])

(µi (x) + Ĝij) for x ∈ Pj

Figure: Some realizations of instance perturbation
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Towards a Smoothed-Analysis

Conjecture (smoothed query complexity of Webb’s)

Fix σ > 0. Denoting Q(·) = # queries by Webb’s,

max
Iµ,P

EI∼Iσµ,P
[Q(I)] = O

(
poly(n)

σ2

)
i.e. the σ-smoothed query complexity is not bad

linear independence doesn’t matter anymore (satisfied w.p. 1).

what can we prove today?
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Towards a Smoothed-Analysis

we can ”almost” prove:

Conjecture (”two-draw” smoothed query complexity of Webb’s)

Fix σ ∈ (0, 1/n). Denoting Q(·) = # queries by Webb’s,

max
Iµ,P

EI,I′∼Iσµ,P

[
min{Q(I),Q(I′)}

]
= O

( n

σ2

)
next: what we have, and what we need
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What we have

Recall Webb’s runtime O(n4.5 · κ(M))

In perturbation, deal with M̃G := D︸︷︷︸
renormalize

( M︸︷︷︸
orig. matrix

µ, P

+ G︸︷︷︸
shifts

)

Claim (this work)

For any instance µ,P giving rise to M, and

G : random matrix with iid N (0, σ2) entries

Then,

E[min{κ(M̃G), κ(M̃G
′
)}] = O

( n

σ2

)
not our perturbation model (these might ”sign” measures)
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What we need

if this true then our ”two-draw” conjecture follows

Conjecture

G : random matrix iid entries N (0, σ2)

Ĝ : random matrix iid entries |N (0, σ2)|
Then, for any square (nonnegative row stochastic) M, we have

E[κ(MĜ)] ≤ O(poly(n, σ−1)) · E[κ(MG)]

stability of our perturbation model isn’t ”much worse” than gaussian

intuitive - models pretty similar

numerically supported
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Overview

1 setting + known results ✓
2 envy-free for n = 2, 3, 4, Aziz and Mackenzie (O(n ↑↑ 6)) ✓
3 Webb’s Algorithm & Chéze’s Result (nO(1)) ✓
4 strengthening Chéze’s ✓
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Takeaways

cake-cutting is NOT a piece of cake!

envy-freeness

important and interesting fairness criterion
historically restricted to small n
evidently tractable for ”real” inputs

very active field, trying to bring the complexity down so that we can
get to enjoying our cake!
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