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Abstract

Motivated by a type of k-armed bandit problem with heterogeneous and unknown reward

distributions, we review the fundamental works in the domain of variance-aware algorithms—

those that use sample variances in computation of arm scores. We revisit works deemed capable

of providing insight to the setting of motivation, particularly Auer et al. (2002), Audibert et

al. (2009), and, more recently, Cowan et al. (2017). Along the way, we discover a tighter regret

analysis of Auer et al.’s UCB1-NORMAL, eventually removing an unnecessarily large constant in

front of the logarithmic term.

1 Introduction

In a typical formulation of the k-armed bandit problem, an agent is faced with a horizon of n

rounds, and is required to decide upon one of k alternative arms each round t ∈ [n]. The agent

strategically chooses via a policy π. Upon picking an arm i ∈ [k], the agent receives a sample from

a distribution Pi with mean µi. Denoting µ∗ := maxi µi as the reward mean of an optimal arm, the

agent subsequently suffers a per-round expected regret µ∗ − µi. The performance of a policy π is

summarized via the cumulative expected regret Rπ
n(ν) := E(

∑n
t=1 µ

∗ −µat), where the expectation

is over randomness in the policy as well as the environment ν, i.e. the particular set of distributions

{Pi}i∈[k].
Although the Pi’s often have the same distributional characteristics, e.g. same sub-Gaussian

parameter, there are interesting settings in which they need not. In fact, a major innovation in

multi-fidelity bandits (e.g. see [5]) is the algorithmic understanding of how one should optimally

balance the trade-off between quality of samples, as well as the budget constrained by the costs of

different modes of measurement, called fidelities. Here one can view the quality of samples—given

by the particular fidelity used to collect them—as conceptually analogous to a particular scenario

in which Pi’s exhibit heterogeneous distributional characteristics. From here, we delineate our

motivating model.
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1.1 Motivation 1 INTRODUCTION

1.1 Motivation Despite diverging from the canonical multi-fidelity bandit, we imagine a system

of k = LH arms, where each arm corresponds to one of L actions, and one of H channels1.

Upon playing the arm indexed by (ℓ, h) ∈ [L] × [H], the agent receives a reward sampled from

a mean µℓ Gaussian with variance σ2
H . So far, this is an alternative view of a (cost-less) multi-

fidelity bandit. However, the analogy breaks down once we assume the variances—analogous to

the fidelities—are unknown beforehand. In this case, the agent is incentivized to not only find

argmaxℓ µℓ, but also identify argminh σ
2
H , for anything else will lead to relatively unreliable mean

reward estimation. Viewing this model from yet another angle, one can recognize it as a system

characterized by unknown zero-mean distributions (Ph)h∈[H]. Here, it seems that optimal algorithm

design could subtly depend on the nature of heterogeneity and prior side-information on pertinent

noise parameters. In the end, we wish to obtain lower and upper-bounds on primarily the following

settings:

• Ph ≡ N (0, βh) for all h, (β1, . . . , βH) ∈ RH
+ unknown.

• Ph has bounded support [−bh, bh] for all h, (b1, . . . , bH) ∈ RH
+ unknown.

Fortunately, a good deal of machinery has been developed since Auer et al. (2002)—arguably

the foundational paper for modern study of bandit algorithms. In this report, we review a small

selection of works for potentially useful ideas towards our motivating problem. After returning to

our initial k-armed bandit formulation, we describe the organization of this survey.

1.2 Formulation Recalling the notation above, we assume by default k ∈ N and k ≥ 2. To each

arm i ∈ [k], we correspond the reward distribution Pi with unknown mean µi and unknown variance

σ2
i < ∞. Let µ∗ = maxi µi, and ∆i = µ∗ − µi for each i ∈ [k]. Without loss of generality, assume

µ1 = µ∗, i.e. arm 1 is an optimal arm. For each round t = 1, 2, . . . , n under policy π, let aπt

denote the arm chosen by the policy π, and Xt ∼ Paπt
the random reward received. Under the

same policy π, let T π
i (t) :=

∑t
s=1 I{aπs = i} denote the number of times arm i ∈ [k] is played by

and including round t, with T π
i (0) := 0. Wherever clear from context, we’ll drop the superscript π.

We’ll denote µ̄i,t := (1/Ti(t))
∑t

s=1Xs · I{as = i} as the sample mean available at the end of round

t, constructed with all samples collected by the agent from arm i. For a, b ∈ R, we denote (a ∨ b)

as their maximum, and (a ∧ b) as their minimum.

1.3 Organization We organize this survey into Section (2) for unbounded rewards, and Sec-

tion (3) for bounded rewards. In Section 2 we revisit Auer et al.’s UCB1-NORMAL, which is less

well-known, perhaps, due to its reliance on two (now one) unproven conjectures. We provide a

complete, alternative2 proof to the regret bound in the original paper, thereby removing a large

constant scaling for the dominant logarithmic term. Following, we describe a more recent algorithm

1As a practical application, consider the setting in which an experimenter has access to a selection of H noisy
probes, and seeks to efficiently test a black-box system at L select locations.

2Assuming the same conditions.
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2 UNBOUNDED REWARDS

ISM-NORMAL2: an updated version of its ancestor ISM-NORMAL1 (c.f. [1]), which similarly required

an unproven conjecture. However, as the recent work [6] indicates, not only is the conjecture false,

but also a small modification is a sufficient condition for asymptotic optimality. In Section 3, we

slightly shift focus to the case of bounded rewards, revisiting the celebrated work of Audibert et

al., along with its variance-aware algorithm UCB-V. In Section 4, we finish with a discussion for

potential future work.

2 Unbounded Rewards

2.1 UCB1-NORMAL We consider the setting in which Pi ≡ N (µi, σ
2
i ) for all i ∈ [k], and σ2

i is

unknown. Seemingly, the earliest study of this problem was initiated by the (original UCB1) authors

in [2]. As a slight modification of the UCB1 algorithm, one adjusts the upper confidence bound with

the respective plug-in estimator of the variance. For the arm i, let

S2
i,t :=

1

Ti(t)− 1

t∑
s=1

(Xs − µ̄i,t)
2 · I{as = i} (1)

denote its unbiased reward sample variance3, which is available to the agent at the end of round t.

In this work, the authors introduce the algorithm UCB1-NORMAL 1 with score

Ui(t) := µ̄i,t +

√
S2
i,t

16 ln(t)

Ti(t)

defined for Ti(t− 1) > 0. The algorithm is as follows.

Algorithm 1 UCB1-NORMAL

for each round t = 1, 2, . . . , n do
If there is an arm i with ≤ ⌈8 log t⌉ plays, play arm i
Otherwise, play arm j = argmaxj Uj(t− 1)
Update estimates and UCB scores

end for

Unfortunately, to make any regret guarantees on UCB1-NORMAL, the authors required some

conjectures on tail bounds for Student and χ2 r.v.’s, which they were only able to verify numerically.

Conjecture 1. [2, 4] Let X be a Student r.v. with s degrees of freedom. Then, for all a ∈
[0,

√
2(s+ 1)], P (X ≥ a) ≤ e−a2/4.

Conjecture 2. [2] Let X be a χ2 r.v. with s degrees of freedom. Then, P (X ≥ 4s) ≤ e−(s+1)/2.

Conjecture 1 was actually proven in 2015 by [4], whereas Conjecture 2 is seemingly open.

Assuming these conjectures, the authors proved an upper bound on the regret.

3Computed in the usual way, with Bessel’s correction.
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2.1 UCB1-NORMAL 2 UNBOUNDED REWARDS

Theorem 1. [2] Consider a k-armed bandit on (unknown) Gaussian reward distributions ν =

(P1 . . . Pk). For policy π described by UCB1-NORMAL, i.e. algorithm 1, the expected regret satisfies

Rπ
n(ν) ≤

∑
i:∆i>0

∆i

(
1 +

π2

2
+ 8 ln(n)

)
+

256σ2
i ln(n)

∆i
(2)

if Conjecture 2 is true.

Originally, we wished to sketch the proof of this regret bound, but we realized we could perform

a more modern analysis of this algorithm, drastically shaving down the gap and variance dependent

logarithmic term (assuming the same conjectures). We could not find in the literature our upper

bound on the regret of UCB1-NORMAL.

Theorem 2. [This work] In the same setting as above,

Rπ
n(ν) ≤

∑
i:∆i>0

∆i

(
4 + 8 ln(n)

)
+

8σ2
i ln(n)

∆i
(3)

if Conjecture 2 is true.

Proof. Let δ ∈ (0, 1) to be decided upon later. Fix any j ∈ [k] such that ∆j > 0. Denote the

auxiliary quantity Ui(t − 1, δ) := µ̄i,t−1 +
√
S2
i,t−1

16 ln(1/δ)
Ti(t−1) , where Ui(0, δ) is defined to be +∞ for

all i ∈ [k]. For j, consider the ”good” event

Gj :=

{
µ1 ≤ min

k+1≤s≤n
U1(s, δ)

}⋂{
µ̄j,uj +

√
S2
j,uj

16 ln(1/δ)

uj
< µ1

}

where µ̄j,uj and S2
j,uj

denote the sample mean and unbiased sample variance constructed with uj

IID samples from distribution Pj . The first claim is that if Gj occurs, then Tj(n) ≤ uj , for any

uj > k.

Supposing that Gj holds, but Tj(n) > uj , then there exists a t ≤ n such that at = j and

Tj(t − 1) = uj . Since k < uj = Tj(t − 1) ≤ t − 1, it must be that t − 1 ≥ k + 1. Thus,

Uj(t− 1, δ) = µ̄j,uj +
√

S2
j,uj

16 ln(1/δ)
uj

< µ1 ≤ U1(t− 1, δ), a contradiction, as the algorithm prefers

arms with higher score. Applying this, it follows that for any integer ℓ ≥ 1, we have
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2.1 UCB1-NORMAL 2 UNBOUNDED REWARDS

E(Tj(n)) ≤ E
(
1 +

n∑
t=k+1

I{at = j}
)

≤ ℓ+ E
( n∑
t=k+1

I{at = j, Tj(t− 1) ≥ ℓ}
)

= ℓ+ E
(
I{Gj}

n∑
t=k+1

I{at = j, Tj(t− 1) ≥ ℓ}
)
+ E

(
I{GC

j }
n∑

t=k+1

I{at = j, Tj(t− 1) ≥ ℓ}
)

≤ ℓ+ uj + E
(
I{GC

j }
n∑

t=k+1

I{at = j, Tj(t− 1) ≥ ℓ}
)

≤ ℓ+ uj + n · P (GC
j ∩Aj)

where Aj := ∩n
t=k+1{Tj(t−1) ≥ ℓ}4. We now bound the probability of GC

j ∩Aj . By a union bound

and ”conversion of time to samples,”

P

(
µ1 ≥ min

k+1≤s≤n
U1(s, δ), Aj

)
≤

n∑
r=k+1

P

(
µ1 ≥ µ̄1,r +

√
S2
1,r

16 ln(1/δ)

r
, r ≥ ℓ

)

=
n∑

r=k+1

P

(
µ1 − µ̄1,r√

S2
1,r

r

≥ 4
√
ln(1/δ), r ≥ ℓ

)

:=

n∑
r=k+1

P

(
Zr ≥ 4

√
ln(1/δ), r ≥ ℓ

)

Each of the Zr is a Student r.v. with r− 1 degrees of freedom (c.f. [2]). For ℓ ≥ 8 ln(1/δ), we have

r ≥ 8 ln(1/δ) for all r under the summand—thus, we could apply conjecture 1 for s = r − 1 and

a = 4
√

ln(1/δ), since 4
√
ln(1/δ) ≤

√
2r. Under such an ℓ, by conjecture 1, we have that the RHS

is at most
∑n

r=k+1 δ
4 ≤ nδ4. Moreover,

P

(
µ̄j,uj +

√
S2
j,uj

16 ln(1/δ)

uj
> µ1, Aj

)
≤ P

(
µ̄j,uj +

√
S2
j,uj

16 ln(1/δ)

uj
> µ1

)

= P

(√
S2
j,uj

16 ln(1/δ)

uj
> ∆j + µj − µ̄j,uj

)
4Note that Tj(τ) ≥ ℓ =⇒ Tj(τ + 1) ≥ ℓ.
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2.2 ISM-NORMAL2 2 UNBOUNDED REWARDS

Let Fj denote the event on the RHS. Denoting Bj := {µj − µ̄j,uj ≤ ∆j}, we have that

P (Fj) ≤ P (Fj ∩Bj) + e
−

uj∆
2
j

2σ2
j

≤ P

(√
S2
j,uj

16 ln(1/δ)

uj
> 2∆j

)
+ e

−
uj∆

2
j

2σ2
j

= P

(
(uj − 1)

S2
j,uj

σ2
j

> (uj − 1)
uj ∆

2
j

4σ2
j ln(1/δ)

)
+ e

−
uj∆

2
j

2σ2
j

For uj ≥
(
(16σ2

j /∆
2
j ) ∨ 8

)
ln(1/δ), we can bound the RHS as

P

(
(uj − 1)

S2
j,uj

σ2
j

> 4(uj − 1)

)
+ δ8

Noting the r.v. under P (·) is χ2 with uj−1 degrees of freedom (c.f. [2]), an application of conjecture

2 yields that the RHS ≤ e−uj/2+δ8 ≤ δ4+δ8 ≤ 2δ4 under this regime for uj . Thus, for ℓ ≥ 8 ln(1/δ)

and uj ≥
(
(16σ2

j /∆
2
j ) ∨ 8

)
ln(1/δ), we have that P (GC

j ∩ Aj) ≤ (n+ 2)δ4. Taking ℓ = ⌈8 ln(1/δ)⌉
and uj = ⌈

(
(16σ2

j /∆
2
j ) ∨ 8

)
ln(1/δ)⌉, and setting δ = 1/

√
n we have that

E(Tj(n)) ≤ ℓ+ uj + n(n+ 2)δ4 ≤ max
(8σ2

j

∆2
j

, 8
)
ln(n) + 4 ln(n) + 4 ≤

8σ2
j

∆2
j

ln(n) + 8 ln(n) + 4

The final bound is immediately from bounding Rπ
n(ν) =

∑
j:∆j>0∆jE(Tj(n)) with the above. ■

In contrast, the original bound5 for UCB1 (known variances case) given by the authors is

Rπ
n(ν) ≤

∑
i:∆i>0

∆i

(
1 +

π2

2

)
+

8σ2
i ln(n)

∆i
(4)

Comparing equations (4) and (3), it seems that the lack of variance knowledge beforehand imposes

a per-arm cost on the regret of order ∆i ln(n). Recalling that this additive term is required for the

conjectured Student and χ2 concentration, it raises the question whether this logarithmic term is

necessary. Unfortunately, this work does not offer a discussion on the regret lower-bound of this

problem, to which we turn to discussion in [6].

2.2 ISM-NORMAL2 Usually, one can construct a lower-bound for a class of well-behaved policies

termed α-consistent policies6 A naturally stronger notion (c.f. [1]) is that of a strongly consistent

policy—one that is α-consistent for all α > 0. Specifically,

Definition 1. A policy π is said to be α-consistent on the set of environments E if for any ν ∈ E
and any α > 0, there exists a τ(α, ν) and constant C > 0 such that Rπ

n(ν) < Cnα for all n ≥ τ(α, ν).

5Having taken the liberty of re-scaling the variance dependent term, when variances are known.
6Recall that such a policy suffers at most o(nα) regret on all environments, for a fixed α.
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2.2 ISM-NORMAL2 2 UNBOUNDED REWARDS

For example, the upper bounds above demonstrate that UCB1-NORMAL is strongly consistent for

the heterogeneous Gaussian reward setting, even when variances are unknown. For such policies,

we paraphrase the following result in [1], which is a special case of Theorem 1 of the same paper

(c.f. [6]).

Theorem 3. [1] Let E denote the set of all environments ν, where each ν corresponds to some

ordered tuple
(
(µi, σ

2
i )
)k
i=1

. If π is strongly consistent for E, then

lim inf
n→∞

Rπ
n(ν)

ln(n)
≥

∑
i:∆i>0

2∆i

ln(1 +
∆2

i

σ2
i
)

To give a comparison with equation (3), see that UCB1-NORMAL plays each sub-optimal arm no

more than (8∆i+
8σ2

i
∆i

) ln(n) times as n → ∞. As indicated above, any strongly consistent algorithm

must play each sub-optimal arm i at least 2∆i

ln(1+(∆2
i /σ

2
i ))

ln(n) times, asymptotically. The ratio of the

former with the latter is no more than 4
(
1+(σ2

i /∆
2
i )
)
ln(1+(∆2

i /σ
2
i )). Letting ρi := σ2

i /∆
2
i , perhaps

the most interesting setting is when ρi ≥ 1 which is roughly the setting where mean rewards are

”most easily confused” with the optimal arm means. One can verify that 4
(
1+ρi

)
ln(1+ρ−1

i ) ≤ 6 for

ρi ≥ 1, suggesting that our analysis nearly matches the lower-bound constant. Without any further

assumptions, however, the authors of [6] offer an algorithm that achieves the lower-bound scaling for

all strongly consistent policies—that is, asymptotically optimal over the set of all strongly consistent

policies. They call their algorithm7 ISM-NORMAL2, which utilizes the following score (recalling (1))

Ii(t) = µ̄i,t +

√
S2
i,t

(
t

2
Ti(t)−2 − 1

)
(5)

This admits the following regret upper bound.

Algorithm 2 ISM-NORMAL2

Play each arm three times
for each round t = 3k + 1, 2, . . . , n do

Play arm j = argmaxj Ij(t− 1)
Update estimates and score

end for

Theorem 4. [6] Consider a k-armed bandit on (unknown) Gaussian reward distributions ν =

(P1 . . . Pk). For policy π described by ISM-NORMAL2, i.e. algorithm 2, for all ϵ ∈ (0, 1), the expected

regret satisfies

Rπ
n(ν) ≤

∑
i:∆i>0

∆i

[
8

ϵ2
+ 3 +

2 lnn

ln
(
1 +

∆2
i

σ2
i

(1−ϵ)2

1+ϵ

)]+

√
π

2e

8minj σ
3
j ln ln(n)

∆3
i ϵ

3
+

8σ2
i

∆2
i ϵ

2
(6)

7ISM stands for ”inflated sample mean.”
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2.2 ISM-NORMAL2 2 UNBOUNDED REWARDS

The proof follows the classical techniques in [2], primarily innovating through the following

un-intuitive8 lemma, which provides a scaling law for the probability that a χ2 random variable

exceeds a χ2
d random variable above a certain threshold.

Lemma 1. [6] Let Z and U be independent random variables, Z ∼ N (0, 1), and U ∼ χ2
d, where

d ≥ 2. For δ > 0, p > 0 the following holds for all k ≥ 1:

1

2
P
(1
4
Z2 ≥ U ≥ δ2

)
k−d/p ≤ P

(
δ +

√
U
√
k2/p − 1 < Z

)
≤ e−(1+δ2)/2p

2δ2
√
d

k(1−d)/p

ln k
(7)

The authors also make use of a useful, but less well-known Chernoff bound.

Lemma 2. [6] For Z ∼ χ2
d, P (Z > d(1 + ϵ)) ≤

(
e−ϵ(1 + ϵ)

)d/2
.

As an outline of the proof of Theorem 6, the authors follow the standard technique of bounding

frequency of sub-optimal events. Defining

Ij(m,u) = µ̄j,u +

√
S2
j,u

(
m

2
u−2 − 1

)
(8)

The following events for any sub-optimal arm j are used to construct the bad events.

• Ej,1(t− 1) := {Ij
(
t− 1, Tj(t− 1)

)
≥ µ∗ − ϵ∆i

2 } jth score nearly exceeds µ∗

• Ej,2(t− 1) := {µ̄j,Tj(t−1) ≤ µj + ϵ∆i
2 } jth sample mean is nearly below the true mean

• Ej,3(t− 1) := {S2
j,Tj(t−1) ≤ σ2

j (1 + ϵ)} jth sample var. is nearly below the true var.

Going on, the authors propose to control the following counts,

n1
j =

n∑
t=3k+1

I{at = j ∩ Ej,1(t− 1) ∩ Ej,2(t− 1) ∩ Ej,3(t− 1)}

n2
j =

n∑
t=3k+1

I{at = j ∩ Ej,1(t− 1) ∩ Ej,2(t− 1) ∩ Ej,3(t− 1)C} ≤
n∑

t=3k+1

I{Ej,3(t− 1)C}

n3
j =

n∑
t=3k+1

I{at = j ∩ Ej,1(t− 1) ∩ Ej,2(t− 1)C} ≤
n∑

t=3k+1

I{Ej,2(t− 1)C}

n4
j =

n∑
t=3k+1

I{at = j ∩ Ej,1(t− 1)C}

since Tj(n) = 3 + n1
j + n2

j + n3
j + n4

j . Upon re-arranging terms, n1
j can be upper-bounded a.s., as

n1
j ≤

n∑
t=3k+1

I{at = j ∩ Tj(t− 1) = O
( lnn

ln(1 +
∆2

j

σ2
j
o(ϵ))

)
}

8Author’s own words.
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3 BOUNDED REWARDS

which supplies the correct asymptotic scaling with lnn. The terms n2
j , n

3
j are not tedious to bound,

thanks to the normality of the rewards—applying lemma 2 to bound n2
j and the usual tail bound to

n3
j . These two yield the ϵ and σ2

j dependent constant terms in the overall regret upper bound (6).

The ultimate term contributes the iterated logarithmic term, arising as follows. Let j∗ denote

any optimal mean arm with minimum variance. Since arm j ̸= j∗ is picked in the indicator, n4
j is

at most

n∑
t=3k+1

I{Ij∗
(
t− 1, Tj∗(t− 1)

)
≤ µ∗ − ϵ

∆j

2
} ≤

n∑
t=3k+1

I
{
∪t−1
s=3 {Ij∗(t− 1, s) ≤ µ∗ − ϵ

∆j

2
}
}

:=

n−1∑
t=3k

I{As,t}

For Z ∼ N (0, 1) and Us−1 ∼ χ2
s−1 independent,

P (As,t) =

(
µ∗ + Z

σj∗√
s
+ σj∗

√
Us−1√
s

√
t

2
s−2 − 1 < µ∗ − ϵ

∆j

2

)
= P

(
Z +

√
Us−1

√
t

2
s−2 − 1 < −ϵ

∆j

2

√
s

σj∗

)
= P

(
ϵ
∆j

2

√
s

σj∗
+
√
Us−1

√
t

2
s−2 − 1 < Z

)
Note crucially the exchange of estimates for Z and Us−1 depends on normality, for the usual

sample mean and unbiased sample variance are independent only for Gaussian r.v.’s. Also, note

the symmetry of Gaussians was used. At this point one can apply lemma 1, and the remainder of

the proof is balancing terms.

3 Bounded Rewards

3.1 UCB-V Next we consider the generally stated sample-variance tuned algorithm of [3]. To

preface, Auer et al. also studied the scenario where the reward distributions are limited to a

bounded interval [0, b] a.s., and that the agent has knowledge of the interval. Here, Auer et al.’s

analysis of UCB1 yields that the expected regret satisfies

Rπ
n(ν) ≤ 8

( ∑
j:∆j>0

b2

∆j
) ln(n) +O(1) (9)

If we interpret b2 as the sub-Gaussian parameter of the reward distributions, then given the dis-

cussion in the previous section, one can see this is not really improvable under Gaussian rewards,

at least for strongly consistent policies (c.f. Theorem 3). However, in practice, it may be that b is

rather a conservative uninformed guess. For instance, there could be an optimal mean arm whose

reward distribution lies within a sub-interval of [0, b] of length b0 < b. Clearly then, sequential esti-

9



3.1 UCB-V 3 BOUNDED REWARDS

mates of each arm’s variance should be used to tune UCB1’s score. In fact, Auer et al. was cognizant

of this, providing the algorithm UCB-TUNED in their experimentation section, but could not prove

a regret bound. This inspired the study of a parameterized variance-aware algorithm UCB-V in [3],

which includes UCB-TUNED as a special case. To describe UCB-V, let E1, E2, . . . be non-negative and

non-increasing sequence, termed the exploration function. With a slight inconsistency with (1) in

the previous section, re-define

S2
i,t :=

1

Ti(t)

t∑
s=1

(Xs − µ̄i,t)
2 · I{as = i} (10)

as the sample variance with Ti(t) samples9. Consider the arm score,

Bi(t) := µ̄i,t +

√
S2
i,t

Et

Ti(t)
+ c

3bEt

Ti(t)

with the convention that 1/0 = +∞. Notably, this form of bonus arises from the now well-known

empirical Bernstein bound, introduced in the same paper.

Lemma 3. [3] Let X1 . . . Xt be IID r.v.’s with support in [0, b]. Let X̄t be their empirical mean

and Vt =
t−1
t St where S2

t is their unbiased sample variance. Then, for any t ∈ N≥0 and x > 0, with

probability ≥ 1− 3e−x,

|X̄t − µ| ≤
√

2Vtx

t
+

3bx

t

Moreover, for β(x, t) := 3 infα∈(1,3]
(
ln t
lnα ∧ t

)
e−x/α, with probability ≥ 1 − β(x, t), holding simulta-

neously for all s ∈ {1, . . . , t},

|X̄s − µ| ≤
√

2Vsx

s
+

3bx

s

Algorithm 3 UCB-V

Input: c ≥ 0, (Et)t≥0, b > 0
for each round t = 1, 2, . . . , n do

Play arm j = argmaxj Bj(t− 1)
Update estimates and arm score.

end for

UCB-V enjoys the following regret guarantee.

Theorem 5. [3] Consider a k-armed bandit on reward distributions ν = (P1 . . . Pk), where Pi is

bounded almost surely in [0, b] for all i ∈ [k]. For policy π described by UCB-V, i.e. algorithm 3, the

expected regret satisfies

Rπ
n(ν) ≤

∑
i:∆i>0

∆i

(
1+8(c∨ 1)

( σ2
i

∆2
i

+
2b

∆i

)
En+ne−En

(24σ2
i

∆2
i

+
4b

∆i

)
+

n∑
t=⌊16En⌋

β((c∨ 1)Et, t)

)
(11)

9We believe the authors forwent the unbiased estimator for brevity of notation.
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4 FUTURE WORK

One nicety of this regret bound is that it is particularly instructive as to the choice of Et = ln(t),

for otherwise a too large of an exploration function leads to polynomial regret. Unfortunately, a

negative result provided in this work explains that b is un-removable from the bound, over the set

of consistent policies.

4 Future Work

Re-examining our motivating problem in the case of Gaussian noise, it seems that one straight-

forward procedure could be the usage of UCB1-NORMAL on all k = LH arms. However, this is

likely wasteful for the following reason. Letting aℓ,h denote the arm corresponding to action ℓ and

channel h, the reward distribution of this arm is N (µℓ, σ
2
h). The sample variance of the arm aℓ,h is

independent of the sample mean, by normality. Thus, a more accurate sample variance estimator

can be constructed by aggregating over all action samples ℓ ∈ [L] for a fixed channel h. Of course,

the number of samples used for each action should determine the averaging scheme. Although

this leads to a modified UCB1-NORMAL algorithm for the action selection, it is unclear what kind of

algorithm should be used for the channel selection.

In any case, the next step would be to extend such an algorithm to the case that each channel

is non-Gaussian, presenting the challenge of circumventing the usage of independent sample mean

and variance, as well as distributional symmetry. But this is more of a general challenge, for we saw

how crucial this was for Theorems 2 and 4, primarily through conjectures 1, 2, and lemma 1, respec-

tively. Indeed, for bounded rewards, one can say more via empirical Bernstein bounds. However,

one may not want to assume, for their system model, precisely that boundedness. Beyond these

considerations, and beyond our motivation, more general curiosities include the natural extensions

to structured bandit scenarios, e.g. linear bandits, contextual bandits, etc.
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