
On the Sample Complexity of Learning Social Influence Functions:

A Survey

Alejandro Gomez-Leos, Shashank Gupta

March 2023

1 Introduction

Consider the following problem. Suppose we are tasked to engineer a successful product marketing
campaign with a limited budget. Amongst many strategies, we consider that of celebrity marketing,
in which we first convince some initial product adopters—who have high social status—to endorse
our product. Then, the hope is that their followers eventually decide to adopt the product (by
means of their social platforms), as well as the followers-of-the-followers, and so on. If we carefully
plan this strategy, one can envision the efficiency of allocating the budget towards recruiting initial
adopters.

To optimize this strategy, we must consider the cost of convincing these initial adopters. More
concretely, let V be the set of individuals, and suppose there exists a function C(·) that maps set
S ⊆ V to the cost of recruiting them. Also, let f(·) be the influence function that maps S to the
number of individuals that will be influenced by the end of the campaign. Letting B denote the
budget, the optimal strategy should be to pick the set of individuals S∗ = argmaxS:C(S)≤B f(S).

This problem is referred to as Influence Maximization, introduced in the celebrated paper of
Kempe et al. [3] along with hardness results and approximation algorithms. Furthermore, their
work further serves as a well-known exposition of the the so-called Independent Cascade (IC)
and Linear Threshold (LT) influence models. Notably, they showed the resulting influence function
induced in these models is a sub-modular function1. Of course, in real-world applications we usually
do not know beforehand the structure of the influence network2 or the influence process governing
it, which naturally demands the non-trivial task of learning the influence function. Naturally,
much interest was generated towards modeling the kind of data (and finding resulting sample
complexities, thereof) required to recover the parameters that parameterize the influence function.
In this survey we primarily concern ourselves with the following question:

How and when are the underlying parameters of such a function learnable?

In other words, through which algorithms and under what assumptions can we accurately
estimate the influence function? This topic is recently formalized in [13] using the traditional PAC-
learnability framework of Valiant [1], but is also closely coupled to progress in learnability-adjacent
problems. In particular, the problem of recovering network and influence process structure via
sampling was initiated by [6, 10], where [10] is notable for the first sample complexity upper and
lower bounds for the widely-used IC model. Moreover, [6, 10] popularized a technique to decouple

1—which in themselves admit a host of independent interest and optimization methods [9]
2For example, we may know the presence of social links, but do not know anything about the relative ”strength”

of a social link.

1

1.1 Organization CONTENTS

the IC process parameter estimation problem into a node-wise (parallel) convex formulation. In [9],
the authors established so-called Probably-Approximately-Mostly-Correct (PMAC) learnability for
classes of submodular functions, of which contain influence functions induced by the IC and LT
models [3]. Motivated to design a practical model-free algorithm for directly estimating the influence
function (and circumventing the initial problem of learning the underlying influence process), the
well-known InfluLearner algorithm is established in [12]. Recently, [15] revisited the problem of IC
parameter process estimation [6, 10], and offered a hyperparametric approach provably lessening
sample complexity and enjoying empirical success on real datasets.

1.1 Organization Through this survey, we hope to communicate an exposition and comparison
on the common modeling assumptions in this space, with particular focus on PAC-style guarantees
and algorithms collectively considered by [10, 12, 13, 15]. In Sec. 2 we give some definitions and
common notation to apply to the surveyed works. In Sec. 3, 4, 5, and 6, we report the modeling
assumptions, algorithms, and main contributions of each of [10,12,13,15]. In Sec. 7, we attempt to
reproduce experiments of [10,12,15].

Contents

1 Introduction 1
1.1 Organization . 2

2 Preliminaries 3
2.1 Notation . 3
2.2 Social Network Graphs . 3
2.3 Influence Models and Influence Processes . 3
2.4 Influence Functions . 4
2.5 Observation Model . 4

3 Learning the Graph of Epidemic Cascades 4

4 Influence Function Learning in Information Diffusion Networks 6

5 Learnability of Influence in Networks 8

6 Learning Diffusion using Hyperparameters 10

7 Experiments 12
7.1 Learning the Graph of Epidemic Cascades . 12
7.2 Influence Function Learning in Information Diffusion Networks 13
7.3 Learning Diffusion using Hyperparameters . 13

8 Future Work 14

References 15

2

2 PRELIMINARIES

2 Preliminaries

2.1 Notation We denote a graph G = (V, E) with nodes V and edges E . Let n := |V|. Assume
the edge set is directed and without self-loops. Let Γin(u) denote the in-neighborhood of a node
u ∈ V. Denote [k] = {1, . . . , k} for k ∈ N. We use the Landau notation in the standard way, and
reserve Õ(·) to hide logarithmic factors.

2.2 Social Network Graphs Consider a social network represented as a graph G, where nodes
correspond to individuals, and edges correspond to social links. Whenever clear, ’node’ or ’individ-
ual’ or ’vertex’ interchangeably describe an element of V. By endowing G with edge weights, we
arrive at our first definition.

Definition 1 (Influence Network). An influence network is a social network G = (V, E), where
each edge (u, v) ∈ E is associated with a scalar ”weight” puv ∈ R+.

Remark 1. The weight puv should be interpreted as the weight of u’s influence upon v. Without
loss of generality, we can assume these weights are restricted to the [0, 1] interval.3

The above captures the aspect of how strongly individuals affect each other. Now, we consider a
model of how individuals conform to others’ opinions—a diffusive influence process which governs
the temporal shifting of ”opinions” throughout an influence network.

2.3 Influence Models and Influence Processes We discuss two of the most popular influence
models: the Discrete-Time Linear Threshold (LT) model, and the Discrete-Time Independent
Cascade (IC) model, popularly exposited in [3]. The interested reader will also find continuous-
time extensions of the IC model [8, 11].

Both models subsume processes defined for time τ = 0, . . . , n− 1 on a given influence network
G = (V, E). Furthermore, assume each node u ∈ V holds an opinion in {0, 1} (e.g. this attribute
may model whether an individual has adopted a product, or their preference for a political candi-
date, etc). The seed set is the subset S ⊆ V of nodes that start with opinion ’1’ at τ = 0. If the
opinion of node u changes at time τ , then it is said that u is influenced at time τ . Let Aτ−1 denote
the nodes influenced exactly at time τ − 1, with A0 := S. We call the set Aτ−1 the active set at
time τ ; only these nodes are allowed influence nodes at τ . It is assumed that once a node changes
opinion from ’0’ to ’1’, they may never revert. We distinguish the models accordingly:

1. Linear Threshold (LT) - The motivation in this model is that an individual’s opinion can
be determined by a linear combination of its familiars’ opinions (e.g. an individual decides
to buy tickets to a concert once enough of their friends are going).

Concretely, each node v ∈ V holds a threshold rv ∈ R+ such that v adopts opinion ’1’ if∑
u∈Γin(v)∩Aτ−1

puv ≥ rv. Note that we can assume the thresholds are [0, 1] (as the weights
are), for we can always normalize the collection of weights and thresholds by the max.

2. Independent Cascade (IC) - Here, the motivation is that influence could be considered
stochastically (e.g. the same individual as above may not deterministically go to the concert
if all their friends are going, but they are more likely).

The process is as follows. Interpreting the edge weights of E as probabilities, at each time
step τ a node v adopts the opinion of nodes u ∈ Γin(v)∩Aτ−1 independently with probability
puv.

3Indeed, we can always normalize the weights by the max.

3

2.4 Influence Functions 3 LEARNING THE GRAPH OF EPIDEMIC CASCADES

We call the influence model M as the collection of all influence processes P (i.e. all configu-
rations of parameters) under that model. Due to the popularity of the IC over the LT model, we
will accordingly compare results relating to the former. For the rest of this survey, influence
process always refers to an IC process, unless otherwise specified.

2.4 Influence Functions If we fix an influence process P upon a influence network G, we have
induced a so-called influence function which outputs a measurement of influence upon input of a
seed set. We distinguish two definitions4 encountered across the surveyed works.

Definition 2 (”Expected Count” (EC) Influence Function, [3]). Given an influence network and
a influence process, an EC influence function f : 2V → R+ maps a seed set S to the (expected)
number of influenced nodes.

Remark 2. The expectation is w.r.t. the (potential) randomness in the influence process, as well
as the initial distribution of the seed.

Definition 3 (”Tabular Probabilities” (TP) Influence Function [13]). Given an influence network
and a influence process, a TP influence function f : 2V → [0, 1]n maps an seed set S to a ”influence
probabilities” vector f(S) := (f (1)(S), . . . , f (n)(S)) ∈ [0, 1]n, where f (u)(S) indicates the probability
u ∈ V is influenced at any time τ .

Remark 3. If the process is deterministic, the components are simply binary indicators.

2.5 Observation Model In the real world, when we desire the influence function for an ap-
plication (e.g. influence maximization), often the training data for our model consists of traces of
the influence process, i.e. past information on which nodes were influenced. Here the observational
model is un-unified. Some consider the m training samples void of temporal information—e.g.
lack of influence timestamps—while other works are more optimistic. Indeed, in some applications
samples have rich temporal information, e.g. tracking a quick onset disease using the clinic check-in
dates of patients. However, time data may not be reliable, e.g. the aforementioned disease has
highly varied onset time. For each work, we clarify which observational model is used, although we
define a commonly used model here.

Definition 4 (Partial observation). The samples S are said to be under partial observation if S
is a sequence of m tuples {(Si, Ii)}i∈[m], each drawn i.i.d. from a distribution D, where each tuple
is referred to as a ”cascade”. Here Si ⊆ V is a seed set drawn i.i.d from an initial distribution
D0, and Ii ⊆ V is the resulting influenced set (containing Si as well) sampled from the distribution
induced by D0 and the influence process throughout τ = 0, . . . , n− 1.

3 Learning the Graph of Epidemic Cascades

In Netrapalli et al. [10], the authors studied the problem of recovering the parameters of an influence
network, given samples resulting from the corresponding IC process. This problem was considered
prior by [6], but their technique resulted in an NP-hard combinatorial optimization without sample
complexity guarantees.

4—with our own terminology.

4

3 LEARNING THE GRAPH OF EPIDEMIC CASCADES

Goal An influence network G = (V, E) has unknown weights and edges. For the node u ∈ V, the
problem is to estimate Γin(u) (parents of node u). The authors consider the estimate Γ̂in(u) as
error-free if it has:

(a) no false neighbors, i.e. Γ̂in(u) ⊆ Γin(u)

(b) all the ”strong” neighbors, meaning all j : pji > 8
α(2

2η − 1) are in Γ̂in(u). Here η is an
algorithm parameter (See Additional Assumptions below for α).

Observational Model Each of the i = 1, . . . ,m samples is a ”influence timestamps” vector
Ti ∈ (R+ ∪ {0,∞})n, where element (Ti)u is the time at which node u was influenced. If a node
u is never influenced in the ith sample, (Ti)u is defined as ∞. Each sample is drawn i.i.d. from
a distribution D—characterized by G’s corresponding IC process—as well as the seed distribution
D0 resulting from picking each node with fixed probability pinit.

Algorithm A sample Ti is a vector whose components are random variables with a joint distri-
bution determined by the edge weights puv, thus the authors advocate a traditional ML estimator
to identify the graph most likely to have generated the samples, further leveraging a decoupling
technique to express it as n convex optimization problems (solvable in parallel).

The construction is as follows. Define θuv = − log(1−puv) for all (u, v) ∈ E (noting θuv increases
monotonically with puv), and θ∗u := {θvu : v ∈ V} as the set of parameters corresponding to the
possible parents of u (potentially any other node). Let θ be the collection of all parameters. The
log-likelihood of a sample T is defined as L(t; θ) = logPθ[T = t]. With an appropriate change of
variables, the authors express the (convex) function as

L(t; θ) = log(psinit(1− psinit)
n−s) +

∑
u

Lu(t; θ
∗
u) (1)

where s is the size of the seed set and we have the individual node terms

Lu(t; θ
∗
u) := −

∑
v:tv≤tu−2

θvu + log

(
1− exp

(
−

∑
v:tv=tu−1

θvu

))
(2)

The algorithm 1 simply optimizes the summation of Eq. (2) (across all samples) to output a
predicted neighborhood for each node (Note that solving Step 1 for all nodes allows one to recover
p̂uv, which can be used to simulate influence of any desired set).

The first term of Eq. (1) accounts for the likelihood that a seed of size s was realized, and the
latter term aggregates the individual likelihoods. For a fixed node u in Eq. (2), the latter term
−
∑

v:tv≤tu−2 θvu discounts the likelihood function for the parameters corresponding to nodes two or
more time steps influenced prior to node u (recall for a time τ , the active nodes are those influenced
at Aτ−1). Of course, the other term of Eq. (2) is accounting for the parameters corresponding to
influence from nodes immediately one time step before u is influenced. Interestingly, the authors
construct this function by considering a Markovian vector process X(τ)τ=0,...,n−1 where

Xu(τ) =

0, if u has opinion ’0’ at time τ

1, if u has opinion ’1’ and is active at time τ

2, if u has opinion ’1’ and is inactive at time τ

This process has the property that each of its sample paths are in bijection with a particular
influence timestamps vector—hence, they have the same probability measure. Expressing the

5

4 INFLUENCE FUNCTION LEARNING IN INFORMATION DIFFUSION NETWORKS

likelihood function in terms of the vector process, the derivation leverages the Markovian property
to factorize the likelihood function via chain rule.

Algorithm 1 ML Algorithm for node u, Netrapalli et al.

Require: η > 0, samples S = {Ti}i∈[m]

1: Solve θ̂ := argmaxθ∗u
∑m

i=1 Lu(Ti; θ
∗
u)

2: Choose in-neighborhood by threshold: Γ̂in(u) := {v : θ̂vu ≥ η}. Output Γ̂in(u).

Additonal Assumptions The influence network satisfies the existence of α > 0 :
∑

v pvu < 1−α
for every node u, which is used to enforce the property called correlation decay—implying the
probability that node u is influenced at time τ decays as O((1− α)τ), hence the process does not
travel too far from the seed. This property is essential for their sample complexity guarantees,
but their experiments without it seem to suggest the same result. They conjecture the same result
holds without correlation decay—to our knowledge not yet proven.

Sample Complexity Let du denote the in-degree of u ∈ V. For any δ ∈ (0, 1), Algorithm 1 admits
sample complexity O(du log(

n
δ)) for outputting an error-free V̂u w.p. ≥ 1− δ. Letting d := maxu du

and δ := ϵ/n, a union bound translates this to error-free recovery of all neighborhoods w.p. ≥ 1− ϵ

in O(d2 log(n
2

ϵ)) samples.
The authors provide an information-theoretic lower bound as follows. Letting G denote the

collection of all graphs for a particular set of edge weights, let G ∈ G be chosen uniformly at
random. Suppose our algorithm outputs Ĝ upon observing samples (Ti)i∈[m]. Let B(G′) ⊆ G be a

set of pre-defined graphs for every graph G′ ∈ G. We say the estimate is error-free if G ∈ B(Ĝ).
For example, if we let B(G′) denote the r edit-distance ball centered around G′, then we say
the output of the algorithm is error-free if the true graph G is within the ball B(Ĝ). Letting
Pe := Pr[G /∈ B(Ĝ)], and T as the underlying random variable which generates the samples, If

m ≥
(1− Pe) log

|G|
supG′ |B(G′)| − 1∑

u∈V H(Tu)

then we have a probability of error at most Pe.

4 Influence Function Learning in Information Diffusion Networks

According to Du et al. [12], the folklore approach to learn the EC influence function is to first
estimate the parameters of the underlying influence network (e.g. through the method above),
then obtain an estimate of the influence function for a desired set S through repeatedly sampling
using the estimated parameters. However, if one does not select the proper influence model, e.g. the
actual process generating the samples is LT, then this method may break. Therefore, they argue
that a proper approach should be influence model-free—motivating their approach of estimating
the true EC influence function directly. For the remainder of this section, all influence functions
are understood to be EC influence functions.

Goal Given an influence network G = (V, E), and any influence process in any influence model5,
the goal is to estimate the resulting EC influence function, for any subset S ⊆ V, with as few

5The authors assume less structure here. For instance, the influence model isn’t restricted to what we have
described. For comparison-sake we focus on this setting.

6

4 INFLUENCE FUNCTION LEARNING IN INFORMATION DIFFUSION NETWORKS

samples as possible.

Observational Model Samples S is under partial observation (Def. 4).

Algorithm Let ϕ(x) := min{x, 1} for all x ∈ R. Denote χS as the n-dimensional binary incidence
vector for the seed set S, i.e. (χS)i = 1 ⇐⇒ i ∈ S. The authors take the view that the influence
network and process induce a distribution over the set of reachability matrices R ∈ {0, 1}n×n

where Rij = 1[node i is reachable from node j]. Therefore, having sampled a R according to
some distribution pR, one can compute an indicator of whether the seed S eventually caused the
influence of a node j as ϕ(χ⊤

SR:,j) (define R:,j as column j of R). It follows that the influence
function evaluated at a seed S is given by

σ(S) = ER∼pR [
∑
j∈V

ϕ(χ⊤
SR:,j)] =

∑
j∈V

ER∼pR [ϕ(χ
⊤
SR:,j)] :=

∑
j∈V

Pr[ϕ(χ⊤
SR:,j) = 1 | χS] (3)

Consider the summand term,

fj(χS) := Pr[ϕ(χ⊤
SR:,j) = 1 | χS] = Er(j)∼pr(j)[χ

⊤
S r(j)] (4)

where r(j) := R:,j , and pr(j) is the marginal distribution of the jth column of R ∼ pR. How can
we learn these functions? Let yij := 1[node j is in set Ii]. One can observe that the conditional
likelihood function of node j being influenced according to the sample (Si, Ii) (conditioned on the
seed Si) is,

fj(χSi)
yij (1− fj(χSi))

1−yij (5)

But rather than directly maximize this objective, the author’s use the following technique: Let qj be
a vector, with entry (qj)i as the fraction of occurrences across all m samples (empirical frequency)
that j was in the influence set when i was in the seed set. qj qualifies as a distribution on {0, 1}n,
and further serves as a surrogate for pr(j). Having drawn K random vectors r1, . . . , rK from qj ,
one can express fj(χS) as a convex combination of these vectors,6

fw(χS) =
K∑
k=1

wkϕ(χ
⊤
S rk) s.t.

K∑
k

wk = 1, wk ≥ 0 ∀k ∈ [K] (6)

If K is sufficiently large—then there exists a w = (w1, . . . , wk) such that fw(χS) is a good ap-
proximation of fj(χS) (See Lemma 1, [12]). Therefore, one can maximize the likelihood objective
function with fw(χSi) in place of fj(χSi) in Eq. (5). However, one may implicitly condition on a
zero probability event without any further modifications. A final modification substitutes fw(χS)
for the Winsorized surrogate fw,λ(χS) := (1 − 2λ)fw(χS) + λ for some λ ∈ (0, 1/4) (truncated to
range [λ, 1− λ]).

Finally, this yields the log-likelihood function for training set S,

Lj(S;w) =
m∑
i=1

(
yij log f

w,λ(χSi) + (1− yij) log(1− fw,λ(χSi))

)
(7)

To maximize this, the authors advocate the popular exponentiated gradient (EG) algorithm in [2].

Additional Assumptions The distribution pj is fully factorized, i.e. a product measure w.r.t.
its component distributions.

6This technique is similar to the idea of random kitchen sinks [5], and is used to expedite training.

7

5 LEARNABILITY OF INFLUENCE IN NETWORKS

Algorithm 2 InfluLearner

Require: Training set S = (Si, Ii)i=1,...,m, λ ∈
(
0, 14
)

1: for each node j ∈ [d] do
2: Sample K random features r1, . . . , rK from qj
3: Compute Φ(Si) := (ϕ(χ⊤

Si
r1), . . . , ϕ(χ

⊤
Si
rK)) for all i ∈ [m].

4: Initialize w1 = (1
K , 1

K , . . . , 1
K)

5: Solve ŵ := argmaxw Lj(S;w) using EG Algorithm

6: f̂w,λ
j (χS) = λ+ (1− 2λ)ŵ⊤Φ(χS)

7: end for
8: Output σ̂(S) =

∑d
j=1 f̂

w,λ
j (χS)

Sample Complexity Setting λ = Õ(ϵd), K = Õ(d
2

ϵ2
), and m = Õ(d

3

ϵ3
), then

ES∼Dm,S∼D0 [(σ̂(S)− σ(S))2] ≤ ϵ w.p. ≥ 1− δ (8)

5 Learnability of Influence in Networks

Although Narasimhan et al. [13] was not the first work to consider the formal learnability of
the class of influence functions (See Balcan et al. [9]), they were able to establish traditional
PAC learnability specifically for different classes of influence functions induced by various influence
models; in particular—the IC model.

Goal Establish the PAC-learnability for the class of TP influence functions induced by the IC
model (amongst others). Under a social network graph G = (V, E), where only the edge set (but
not the weights) is known. Let FG,M denote the class of all TP influence functions imposed by
each influence process P ∈ M upon G, e.g. FG,IC is the class of such functions under the IC model.

Definition 5 (Loss function, Narasimhan et al.). For a set of influenced nodes Y ⊆ V, and any
probability vector p ∈ [0, 1]n, the loss function ℓ : 2V × [0, 1]n → R+ assigns a real-value to ℓ(Y, p)
to quantify the discrepancy between Y and p.

For FG,IC, the authors appropriately consider the squared loss,

ℓsq(Y, p) :=
1

n

∑
u∈V

1[u ∈ Y](1− pu)
2 + 1[u ∈ Y]p2u

Definition 6 (Error function, Narasimhan et al.). For f ∈ FG,M and seed distribution D0, the
error of f w.r.t. loss ℓ is errℓ[f] = E[ℓ(Y, f(X))], where the expectation is over a random drawing
of seed X from D0, and the randomness in the influenced set Y .

Definition 7 (PAC-learnability, Narasimhan et al.). The class FG,M is said to be PAC-learnable
w.r.t. loss ℓ if there exists an algorithm A such that for all P ∈ M (i.e. all parametrizations of
the model), and for a subset of all distributions D0 over the seed sets: whenever the input to A
is a training set S under some observational model, with m ≥ poly(1ϵ ,

1
δ), A returns a function

f ∈ FG,M satisfying
Pr[errℓ[f]− inf

f∈FG,M
errℓ[f] ≥ ϵ] ≤ δ

8

5 LEARNABILITY OF INFLUENCE IN NETWORKS

where the probability measure is w.r.t. the randomness in the sample S. If the algorithm admits this
guarantee with sample complexity polynomial in m and |V| = n, then FG is said to be efficiently
PAC-learnable.

Remark 4. We emphasize FG,M is said to be PAC-learnable w.r.t. the observational model.

Observational Model The authors consider both the partial observations model (Def. (4)), as
well as the following:

Definition 8 (Full observations, Narasimhan et al.). The samples S is said to be under full
observations if S is a sequence of m tuples {(Si, Ii,(0:n−1))}i∈[m], drawn i.i.d. from a distribu-
tion D. Here Si ⊆ V is a seed set drawn i.i.d from an initial distribution D0, and Ii,(0:n−1) =
{Ii,(0), Ii,(1), . . . , Ii,(n−1)} is the sequence of sets influenced exactly at timestep τ = 0, . . . , n− 1 for

the ith cascade. Note
⋃n−1

τ=0 Ii,(τ) is the set of all influenced nodes for the ith sample—sampled from
the distribution induced by D0 and the influence process throughout.

Algorithm First, we describe the PAC-learning algorithm that the authors use to prove the learn-
ability of FG,IC. As an overview, the proof pipeline is as follows: (i) they derive a closed-form
expression f ∈ FG,IC, and show Lipschitzness of f ; (ii) specify the learning algorithm; (iii) con-
struct ϵ-cover over space of processes P (i.e. all edge weight configurations); (iv) translate cover on
P to a cover on FG,IC via Lipschitzness; (v) apply known uniform convergence argument for cover-
ing numbers between estimated parameters and true parameters to bound error between estimate
and true f .

Consider (i). For any set X, and p as the vector cataloging all the puv’s (for a particular
influence process P) one can express the TP influence function fp(X) through its components,

fp
u (X) =

∑
A⊆E

∏
(u′,v′)∈A

pv′u′
∏

(u′,v′)/∈A

(1− pv′u′) · σu(A,X)

where
σu(A,X) := 1[u is reachable from X via edges in A]

Observing that the summation is over the powerset of E , one can see this computation is sim-
ply summing all the possible paths X may influence u, and weighting each by its corresponding
probability. The authors prove (See Lemma 1, [13]) that for all sets X, and all u ∈ V,

||p− p′||1 ≤ ϵ =⇒ |fp
u (X)− fp′

u (X)| ≤ ϵ ∀p,p′ ∈ [0, 1]|E|

Consider (ii). Again, one can take an ML-based approach, defining for each partial observations
sample s = (X,Y),

L(X,Y ;p) =
∑
u∈V

1[u ∈ Y] log(fp
u (X)) + (1− 1[u ∈ Y]) log (1− fp

u (X)) (9)

and simply choose p̂ that maximizes the sum of all such likelihoods
∑m

i=1 L(Si, Ii; p̂). For (iii), one
can construct a cover of size O

(
(|E|ϵ)|E|

)
over the space of possible IC parameters, which gives a cover

of the same size in the function space. (iv-v) yields PAC-learnability for the partial observations
setting.

Under full observations, one can follow a decoupled (localized) algorithm in spirit of [10] (since
observations are have time information) to estimate the edge probabilities, then: (i) construct an
ϵ-cover in the space of local log-likelihood functions, showing the evaluation at the estimated edge

9

6 LEARNING DIFFUSION USING HYPERPARAMETERS

probabilities are not too far from optimal; (ii) argue the expected log-likelihood is strongly concave
under Assumption 1, which translates closeness in local log-likelihood to closeness in the parameter
space; (iii) and finally translate (via the aforementioned Lipschitzness) this closeness in parameter
space to closeness in the influence function space FG,IC.

Additional Assumptions Assume that all puv’s are bounded away from 0 and 1, i.e. ∃λ > 0 :
puv ∈ [λ, 1− λ] for all (u, v) ∈ E .

Assumption 1 (Narasimhan et al.). In addition to the above, assume
∏

v∈Γin(u)
(1 − pvu) ≥

λ for all u ∈ V. Also, each node in V is chosen independently in the initial seed set with probability
pinit ∈ (0, 1).

Sample Complexity

1. The class of IC influence functions FG,IC is PAC-learnable under partial observations, w.r.t.

the square loss ℓsq, admitting sample complexity Õ(n
3|E|
ϵ2

). Under full observations and As-
sumption 1, FG,IC is efficiently PAC-learnable (w.r.t same loss) and admits sample complexity

Õ(n|E|
3

ϵ2
).

2. For the ML objective in the partial observation setting, for any (ϵ, δ) ∈ (0, 1)2, with at least

Õ(n
3|E|
ϵ2

) samples,

sup
p∈[λ,1−λ]|E|

E[
1

n
(L(X,Y ;p)− L(X,Y ; p̂))] ≤ ϵ w.p. ≥ 1− δ (10)

The authors point out that the discrepency between sample complexities in the partial vs. full
observations setting (c.f (1)), i.e. linear dependence on n rather than cubic, is the savings in
performing local ML estimation. However, the cubic dependence on |E| is incurred by their proof
technique, which requires estimating the parameters first, then translating this to a guarantee on
the resulting influence functions.

6 Learning Diffusion using Hyperparameters

Prior to the work of Kalimeris et al. [15], all previous formulations had taken the edge weights puv
as arbitrary—a key contributor of the high sample complexity for the local ML estimator based
algorithms. Without correlated edge probabilities, intuitively one needs many more samples. [15]
introduces a technique to structure these edge probabilities in the IC model.

As a demonstration (per [15]), consider a bipartite graph G = (U, V, E), where |U | = |V | = n
and E is a perfect matching, so |E| = n. Suppose we wish to estimate p̂uv such that |p̂uv − puv| ≤ ϵ
holds for all edges. If we receive samples S under partial observation, then every (Si, Ii) yields a
realization of n Bernoulli random variables Xuv, each having mean puv. In this manner, for each

edge (u, v), let X
(1)
uv , . . . , X

(m)
uv be the m i.i.d. Bernoulli r.v.’s realized. By Hoeffding inequality

Pr[| 1m
∑m

i=1X
(i)
uv − puv| ≥ ϵ] ≤ e−2mϵ2 . Taking e−2mϵ2 ≤ δ/n and applying a union bound, this

yields a sample complexity of O(|E|
ϵ2

log(|E|δ)).

By comparison, suppose each puv = 1/(1+e−x⊤
uvθ), where θ is a hyperparameter in Rz, and xuv is

a feature vector containing information about u and v. Effectively, this parametrization is positing
homophily upon the network, i.e. if u and v share certain characteristics, then their influence
probability should be close to another pair of nodes u′ and v′ who share the same characteristics.

10

6 LEARNING DIFFUSION USING HYPERPARAMETERS

Now, learning puv’s is a logistic regression problem, which is known to admit sample complexity
O(zϵ log(

z
δ)). Hence, if for a general graph |E| is large and z is small, then the sample complexity

savings are significant.

Goal Consider some influence network G = (V, E)—with known edges but unknown weights—
under an IC process, where every edge (u, v) is further endowed with a feature vector xuv ∈ Rd.
Suppose there exists a θ belonging to hypothesis class H = [−B,B]z for some B > 0 such that

puv = puv(θ) := 1/(1 + e−x⊤
uvθ). The goal is to bound the sample complexity of learning H, i.e.

guarantee that
sup
θ∈H

ES∼Dm [L(S, θ)]− ES∼D[L(S, θ̂)] ≤ ϵ w.p. ≥ 1− δ (11)

where S is the set of samples drawn i.i.d. from some distribution D (described below).

Observational Model The manner in which S is drawn differs from other works. For a influence
network G under the corresponding IC process, consider a realization of a cascade B0, B1, . . . , Bn−1,
where Bτ is set of nodes influenced exactly at time τ , and B0 is sampled via some initial distribution
D0. Having defined C1, . . . , Cτ−1, define the collection of labels

Cτ = {((Bτ−1, v), y) | v within 1-hop of Bτ−1, v /∈
τ−1⋃
i=1

Bi, y = 1[v ∈ Bτ]}

which categorizes all the not-yet influenced nodes within 1-hop of Bτ−1: ’1’ if they are influenced at
the next time-step, and ’0’ otherwise. The authors assume that the sample given to the algorithm
is drawn uniformly at random from the resulting union of all such collections for that cascade.
Informally, each sample involves a realization of a cascade, but the actual information supplied to
the algorithm is just one of the many possible indicators of whether some node was influenced in
that cascade at some time instant. At first glance, one may percieve that the resulting model is
more ”instructive” than the partial observations model, since over 1-hop we do not have to worry
about which set was active when a candidate node was influenced, as in the partial observation
model. However, realize that for a single sample ((X, v), 1), if v has multiple parents in X, then it
is difficult to distinguish which node of X actually was the cause of v becoming influenced.

Algorithm The authors view each event {v is influenced by set X given θ} as a Bernoulli r.v.
with success probability fθ

v (X) := 1−
∏

u∈X∩Γin(v)
(1−puv(θ)) (probability the event ”no parents of

v infects v” does not occur). Thus, the likelihood of sample s = ((X, v), y) is fθ
v (X)y(1−fθ

v (X))1−y.
Hence, the respective log-likelihood of s ∈ S is

L(s, θ) = y log(fθ
v (X)) + (1− y) log(1− fθ

v (X))

So, to estimate the edge probabilities puv, we can solve θ̂ = argmaxθ∈H
1
m

∑
s∈S L(s, θ). However,

as the authors note, this objective is not concave (recall the above example for sample ((X, v), 1)—it
is not clear how the estimate θ̂ should be updated).

To deal with this, let S0 be the set of all samples of the form ((X, v), 1) where v has more than
one parent in X. We can partition S = S0 ⊔ (S \ S0). Our objective can be expressed as

f̃(θ) :=
1

m

∑
s∈S0

L(s, θ) + 1

m

∑
s∈(S\S0)

L(s, θ) := f(θ) + ξ(θ) (12)

Here, f(θ) is concave. The authors suggest three approaches:

11

7 EXPERIMENTS

1. Optimize f(θ) directly via Gradient Descent, ignoring the challenging samples. Of course,
then the output will have some extra error, but in certain cases that error can be bounded
based on the probability p0 of observing such samples.

2. Interpret the optimization of f̃(θ) as concave optimization under noise, and apply existing
techniques thereof [14].

3. Use standard concave optimization techniques (e.g. SGD).

Additional Assumptions Assume that all puv’s are bounded away from 0 and 1, i.e. ∃λ >: puv ∈
[λ, 1− λ] for all (u, v) ∈ E .

Sample Complexity We report the sample complexity for the suggested approach (1) for opti-
mizing f̃(θ)7. Let m0 := |S|. For any sample s = ((X, v), y). Let ∆ := maxs∼D|X ∩Γin(v)| denote
a bound on the potential parents of any sample s, and let ∆S be the corresponding bound for
realized training set S. If m0

m ≤ ϵ
∆S log(1/λ) (i.e. there are not too many challenging samples), then

for any (ϵ, δ) ∈ (0, 1), whenever

m = O
(
∆2

ϵ2
(
z log(

zB

λ∆ϵ
) + log(

1

δ
)
)
log2(

1

λ
)

)
we have

sup
θ∈H

ES∼Dm [L(S, θ)]− ES∼D[L(S, θ̂)] ≤ 3ϵ w.p. ≥ 1− δ

Observe that m0/m converges, for large S to the probability p0 of seeing challenging examples. See
Lemma 7, [15] for a bound on p0.

7 Experiments

In this section we report the results of our attempts to reproduce the algorithms described in [10,12,
15]. To be able to compare papers consistently, we use Mean Absolute Error (MAE) as a common
metric across all experiments. All our code for reproducing the experiments is available on GitHub
at https://github.com/shngt/influence-pac.

7.1 Learning the Graph of Epidemic Cascades Netrapalli et al.’s paper serves as a baseline
for several others in this area, and thus is instructive to implement. However, their algorithm does
not scale well to large networks, so we only test our implementation on a (relatively) small network
as proof-of-concept. We created a synthetic Erdos-Renyi Gn,m graph with 100 vertices and 250
edges. We ran the procedure for training sets of size 100 to 100,000, with 100 cascades for each
seed set. In other words, we ran the procedure for 1 to 1,000 seed sets. The seed sets for both
training and testing were generated with pinit = 0.02 i.e. the probability of including a particular
node in the seed set. We use the training data to perform Maximum Likelihood estimation via
Sec. 3 and estimate the puv’s. For evaluation, we generated the same number of random seed sets
and simulated the influence process using the true weights and the predicted weights to obtain true
and predicted influence. We ran the entire procedure 10 times for each training set size, and report
the mean MAE in Fig. 1.

Interestingly, we found that the algorithm tended to produce large θ’s, especially if there were
not many samples for a particular edge, which meant several of the predicted puv’s were close to

7Approach (2) and (3) do not readily admit results on sample complexities.

12

https://github.com/shngt/influence-pac

7.2 Influence Function Learning in Information Diffusion Networks 7 EXPERIMENTS

1. This meant that the predicted influences were much higher than the actual influences, which
resulted in much higher MAEs than in other experiments. Note that this is not an issue per the
problem formulation, since it only aims to make sure false neighbours are excluded and strong
neighbours are included. We believe that the MAE gap could be narrowed with the introduction
of more data.

Figure 1: MAE vs. number of seed sets for reproduction of Netrapalli et al.

7.2 Influence Function Learning in Information Diffusion Networks We implemented
Du et al.’s InfluLearner as described in the paper, but we found that the algorithm does not scale
well without parallelization, a fact reported in the paper as well. This is mainly due to specific time-
consuming steps in the training and evaluation stages such as estimating empirical probabilities
during evaluation and having to perform several rounds of sampling during training. Steps like
these are particularly inefficient in Python. The exponentiated gradient algorithm suggested by
the authors is also highly unstable in this particular setting. For these reasons, we were unable
to reproduce meaningful results on graphs of similar sizes as in our other experiments, but believe
we should be able to reproduce their results after applying heavier parallelization and moving the
more time-consuming subroutines to a more efficient language like C++ or Matlab.

7.3 Learning Diffusion using Hyperparameters The hyperparametrization approach in this
paper greatly reduces the number of parameters to be learned and allowed us to experiment with
larger graphs. The hyperparameter is taken as a vector θ of size 20 and for each node, we sampled
a random feature vector of size 10 with values between 0 and 1. The true θ is randomly sampled
with values between -1 and 1. We implemented the third approach suggested by the authors (i.e.
solving f̃(θ) via SGD, see Sec. 6 and tested it on three datasets - a synthetic Erdos-Renyi graph
with 1,000 vertices and 20,000 edges, a synthetic Kronecker graph with 1,024 vertices and 2,655
edges, and the real-world email-Eu-core dataset [4] with 1,005 vertices and 25,571 edges. Similar
to the original paper, we ran the procedure for training sets of size 1 to 100,000, where a single
sample consists of a tuple ((X, v), y). The seed sets for both training and testing were generated
using a power law distribution with parameter 2.5. Note that while the original paper reports
the average error in estimating puv, we focused on MAE instead as stated earlier. The graphs
for MAE vs. training set size are in Fig. 2, Fig. 3 and Fig. 4 for each dataset. For evaluation,
we generated 100,000 random seed sets and simulated the influence process using the true weights

13

8 FUTURE WORK

Figure 2: Erdos-Renyi Figure 3: Kronecker Figure 4: email-Eu-core

Figure 5: MAE vs. training set size for reproductions of Kalimeris et al.

and the predicted weights to obtain true and predicted influence. We ran the entire procedure
50 times for each training set size, and report the mean MAE in the corresponding graphs. For
the SGD procedure, we take the learning rate as

√
T where T is the size of the training set, and

all other parameters as 0. Also, since computing gradients of the likelihood is relatively involved,
we leveraged PyTorch’s auto-differentiation capabilities and an NVIDIA Titan X 12 GB GPU for
acceleration.

8 Future Work

In this section we conclude with some suggestions for possible research directions.

(a) A unified observational model—The observational model has a large determination on the
resulting sample complexity, with sharp contrast between the two dominating catagories of
models, i.e. with and without time information. Moreover it is not unreasonable to suspect
that a smooth transition between the two extremes can be characterized by an observational
model that posits time-full information perturbed by structured additive noise, e.g. cen-
tered/bounded, sub-gaussian, exponential, etc. Possibly in such a model, tighter application-
specific guarantees could be made.

(b) Improvements on mentioned works—For Netrapalli et al., we noted how the assumption of
correlation decay may not be necessary. To our knowledge, the same guarantees have not been
presented without this assumption, and may make for an interesting work (c.f. Additional
Assumptions in Sec. 3). Other candidates for improvement include decreasing the cubic
dependence on |E| from Narasimhan et al.’s sample complexity under full observation (c.f.
Sample Complexity in Sec. 5)

(c) Interventional Model—In some applications we may be able to innoculate seeds into the
studied social network, e.g. the product testing phase of a marketing campaign. An interesting
generalization of the IC model could be to allow a budgeted intervention of the learner into
the environment to lower sample complexity. Such a model could likely connect this field to
the broader field of causal discovery.

14

REFERENCES REFERENCES

References

[1] Leslie G. Valiant. A theory of the learnable. Commununications of the ACM, 27(11):1134–
1142, 1984.

[2] Jyrki Kivinen, and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for
linear predictors. Information and Computation, 132(1):1–64, January 1997.

[3] David Kempe, Jon M. Kleinberg, and Eva Tardos. Maximizing the spread of influence through
a social network. In KDD, 2003.

[4] Jure Leskovec, Jon M. Kleinberg. and Christos Faloutsos. 2007. Graph evolution: Densification
and shrinking diameters. ACM transactions on Knowledge Discovery from Data (TKDD), 1(1),
pp.2-es.

[5] Ali Rahimi, and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing minimiza-
tion with randomization in learning. In Advances in neural information processing systems,
pp. 1313–1320, 2008.

[6] Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. Inferring networks of diffusion
and influence. In Proc. 16th ACM SIGKDD international conference on Knowledge discovery
and data mining, KDD ’10, pages 1019–1028, New York, NY, USA, 2010. ACM.

[7] Seth A. Myers and Jure Leskovec. On the convexity of latent social network inference. In Proc.
Neural Information Processing Systems (NIPS), 2010.

[8] Manuel Gomez Rodriguez, David Balduzzi, and Bernhard Scholkopf. Uncovering the temporal
¨ dynamics of diffusion networks. arXiv preprint arXiv:1105.0697, 2011.

[9] Maria-Florina Balcan and Nicholas J.A. Harvey. Learning submodular functions. In STOC,
2011.

[10] Praneeth Netrapalli and Sujay Sanghavi. Learning the graph of epidemic cascades. In SIG-
METRICS, 2012.

[11] Nan Du, Le Song, Manuel Gomez Rodriguez, and Hongyuan Zha. Scalable influence estimation
in continuous time diffusion networks. In Advances in Neural Information Processing Systems
26, 2013

[12] Nan Du, Yingyu Liang, Maria-Florina Balcan, and Le Song. Influence function learning in
information diffusion networks. In ICML, 2014.

[13] Harikrishna Narasimhan, David C. Parkes, and Yaron Singer. Learnability of Influence in
Networks. In Proc. 27th NIPS, 3168–3176, 2015.

[14] Alexandre Belloni, Tengyuan Liang, Hariharan Narayanan, and Alexander Rakhlin. Escaping
the local minima via simulated annealing: Optimization of approximately convex functions.
In Proceedings of The 28th Conference on Learning Theory, pp. 240–265, 2015.

[15] Dimitris Kalimeris, Yaron Singer, Karthik Subbian, and Udi Weinsberg. Learning Diffusion
using Hyperparameters. In Proc. 35th ICML, 2420–2428, 2018.

15

	Introduction
	Organization

	Preliminaries
	Notation
	Social Network Graphs
	Influence Models and Influence Processes
	Influence Functions
	Observation Model

	Learning the Graph of Epidemic Cascades
	Influence Function Learning in Information Diffusion Networks
	Learnability of Influence in Networks
	Learning Diffusion using Hyperparameters
	Experiments
	Learning the Graph of Epidemic Cascades
	Influence Function Learning in Information Diffusion Networks
	Learning Diffusion using Hyperparameters

	Future Work
	References

