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Private Informa(on Retrieval with Side Informa(on (PIR-SI)

“send ”X1  X1 = 1011

• Can two par+es efficiently and unilaterally exchange informa+on? 

• Two-party protocol client and server 

• Server holds data  (  ) 

• Client demands  and secretly knows ,  

• A protocol prescribes query-answer procedure 

• Client sends bits  asking to compute  

• Server faithfully sends bits 

𝒟 := {X1, X2, …, Xk} Xi ∼R 𝔽n
q

XW (Xi)i∈S m := |S |

Q[W,S] f(Q[W,S], 𝒟) := A[W,S]

A[W,S]



Private Informa(on Retrieval with Side Informa(on (PIR-SI)

• Good PIR-SI protocols have extra desiderata 

• Privacy: sta(s(cal independence between query and  

 

• Decodability: client can recover desired message 

 

• Efficiency: bit complexity* 

(W, S)

I(Q[W,S]; (W, S)) = 0

H(XW ∣ A[W,S], (Xi)i∈S) = 0

L :=
1

n log q
minprotocols 𝔼( |A[W,S] | )

*Stated in alterna(ve language in paper.

“send ”{∑i∈Tk
Xi}d

k=1 {∑i∈Tk
Xi}d

k=1

???



Related Work

• Seminal result:  bits necessary if (i) info-theore(c privacy required (ii) “single 
database” (iii)  [Chor-Goldreich-Kushilevitz-Sudan 1995, 1998] 

• Scenarios admi_ng cheaper protocols? 

• Relaxing (i): server poly-bounded and exists one-way  [Chor-Gilboa 1997, Kushilevitz-Ostrovsky 

1997, Cachin-Micali-Stadler 1999] 

• Relaxing (ii): mul(ple copies on non-colluding servers [Chor-Goldreich-Kushilevitz-Sudan 1995, 1998, 
Sun-Jafar 2016, Banawan-Ulukuus 2017, 2018] 

• Relaxing (iii):  [Heidarzadeh et al. 2018, Li-Gastpar 2018, Kadhe et al. 2017, 2020, Heidarzadeh-Sprintson 2022]

Ω(k)
S = ∅

f

S ≠ ∅

Disclaimer: not state-of-the-art, many of these are studying slight varia(ons (e.g. mul(-message PIR)



“Data popularity” # Servers Side Info.

Sun-Jafar ‘17 No Multiple No

Banawan-Ulukus ‘17, ‘18 No Multiple No

Kadhe et al. ‘20 No Multiple Yes

Kadhe et al. ‘17 No Single Yes

Heidarzadeh et al. ‘18 No Single Yes

Li-Gastpar ‘18 No Single Yes

Heidarzadeh-Sprintson ‘22 No Single Yes

Vithana-Banawan-Ulukus ‘20 Yes Multiple No

This work Yes Single Yes

Related Work (cont.)

Prior work on PIR-SI assumes marginal distribution of demand is uniform.
We study the feasibility of PIR-SI after relaxing this.



Data Popularity Model

• Popularity profile: . Rela(ve weigh(ng induces distribu(on: 

 ,  

• General case? 

⃗p := (p1, p2, …, pk) ∈ ℕk

Pr[W = w ∣ S = s] :=
pw

∑i∉S pi
Pr[S = s] := ( k

m)
−1

 Theorem [Kadhe et al. 2017]: Let  where and .  If  , then 

. 

n, k, m ∈ ℕ m + 1 ∣ k ⃗p = 1

L(k, m, ⃗p) =
k

m + 1



Main Result

 Theorem (this work): Let  where  and .  

 There’s an  such that 

 

k, m ∈ ℕ m + 1 < k m + 1 ∣ k
δ := δ( ⃗p)

k
m + 1

≤ L(k, m, ⃗p) ≤ (k − m) ⋅ δ +
k

m + 1
⋅ (1 − δ)

• Corollary:     and RHS (ght 

• Note: protocol runs in (me  or  if marginals pre-computed 

• Based on op(mal interpola(on between two previously known protocols

max |pi − pj | = O(1) ⟹ δ = O(1/k)

k1+O(m) O(m)



 messagesK

Size M + 1

•  

• Sample random -uniform par((on of  

• Query  sums over each

P0 := {w} ∪ {i : i ∈ S}

(m + 1) [k]∖P0

k/(m + 1)

Par((on-and-Code Scheme [Kadhe et al. 2017]



• Pick dis(nct . 

• Query  linear combina(ons of this form.

ω1, …, ωk ∈ 𝔽q

k − m

Generalized Reed-Solomon Scheme [Heidarzadeh et al. 2018]

ω0
1 ω0

2 ⋯ ω0
K

ω1
1 ω1

2 ⋯ ω1
K

⋮ ⋮ ⋱ ⋮
ωK−M−1

1 ωK−M−1
2 ⋯ ωK−M−1

K

X1
X2
⋮

XK

K − M

K



Wants W

Knows S

w/ 
probability


 μW,S

w/ probability

 1 − μW,S

ω0
1 ω0

2 ⋯ ω0
K

ω1
1 ω1

2 ⋯ ω1
K

⋮ ⋮ ⋱ ⋮
ωK−M−1

1 ωK−M−1
2 ⋯ ωK−M−1

K

X1
X2
⋮

XK

K − M

K

Size M + 1

Partition-and-Code Scheme

GRS Code Scheme

PC-GRS Scheme

Next: Choosing biases




∑
(w,s)

Pr[W = w, S = s] ⋅ [μw,s ( K
M + 1 ) + (1 − μw,s)(K − M)]Minimize

s.t. Pr[W = w ∣ query Q] = Pr[W = w] ∀w ∈ [k]

Choosing Coin Biases

•  size? No! 

•  implies reduc(on to smaller program of size  

• Non-trivial pigeonholing argument (see Lemma 3)

Ω((k/m)m)

m + 1 < k O(m)



Lower Bound

• Claim:  bits are necessary. 

• Proof sketch: (use entropy chain-rule) 

For query generated by protocol, consider any message . 

By decodability,   messages such that  recoverable from them (otherwise ). 

Repeat argument over remaining messages, yields  pairs. 

 server’s response must have at least  linear combina(ons .

Ω(k/(m + 1))

Xi

∃ m Xi pi = 0

k/(m + 1)

⟹ k/(m + 1) ∎



Summary

• Generalized PIR-SI to nonuniform demands 

• Bounded the bit complexity of this problem 

• Op(mal protocols when populari(es pairwise within  

•  run(me for pre-computed marginals 

• Open problem: Tight lower bound in other regimes?

O(1)

O(m)
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k-Armed Bandits
• Sequen(al decision-making: how to compete with best player in hindsight? 

• Unknown distribu(ons  with means  

• Play for  rounds. On round : 

• Pick arm , obtain iid reward  

• Suffer round regret  

• Use history to inform over next arm decision (follow seq. of policies 
) 

• QuesHon: Which policies admit asympto(cally op(mal (cumula(ve) regret?

D1, …, Dk μ1, …, μk

N t ∈ [N]

at ∈ [k] xt ∼ Dat

REGt = max μi − 𝔼(xt)

πt : (a1, x1, a2, x2, …, xt−1) ↦ [k]



The Classics
• UCB is the algorithmic workhorse for many varia(ons: 

• High level idea: maintain (me-averages and upper-confidence 
bounds for each. Pick arm with highest (empirical mean) + UCB. 

• Essen(ally op(mal for -subgaussian inputs, yields regret 
 [Burnetas-Katehakis 1996, Auer-Bianchi-Fischer 2002] 

• Why does it work?  

high regret  chose too many subop(mal arms  their bounds are 
small  their empirical means are too high  exp. small prob. event! 

• IntuiHon: One should take risks for long-term wellbeing.

σ2

O(σ2k log N)

⟹ ⟹
⟹ ⟹



k-Armed Bandits with a Twist

•  ac(ons,  probes 

• Parameters  and   unknown beforehand 

• On round ,  pick (ac(on, probe) =  

• Obtain iid  

• suffer Mean-Var* regret  

• MoHvaHon: Decision-making in which measurement devices are part of ac(on space. For 
example, industrial chemical manufacturing

A ∈ ℕ P ∈ ℕ

(μa)a∈[A] ⊆ ℝ (νp)p∈[P] ⊆ ℝ+

t ∈ [N] (at, pt) ∈ [A] × [P]

xt ∼ 𝒩(μat
, νpt

)

ΔMEAN
at

+ ΔVAR
pt

= (μMAX − μat
) + (νpt

− νMIN)

*Canonical bandit problem varia(on



Main Result

• Trivial reduc(on to -armed bandit   regret policy 

• Is  doable? Yes! 

AP ⟹ O(AP log N)

O((A + P) ⋅ log N)

 Theorem (this work): Suppose  suffers regret  on every instance. Then, 

  

Moreover, [our policy]  suffers regret upper-bounded by a constant factor of the above. 

π R(π, N) ≤ N0.99

R(π, N) ≳ ∑a∈[A]:Δμ
a>0

ν2
MIN log N

Δμ
a

+ ∑p∈[P]:Δν
p>0

ν2
p log N

Δν
p

π*

• Ours is consistency-op+mal: the only “beoer” policies some(mes suffer nearly-linear regret 

• These are “silly” policies, such as “always-take-decision-X” which is trivially unbeatable in the 
environments where “X” is op(mal



Upper Bound Main Ideas

• Our policy is inspired by alterna(ng-op(miza(on algorithms like coordinate descent. 

• High-level idea: maintain (me-averages and lower-confidence bounds  of variances. Each 
round, pick probe with lowest (empirical variance) - LCB. Then, pick ac(on with highest 
(empirical mean) + UCB where this UCB score is specific to the chosen probe. 

• Proof in a nutshell: Separate regret from op(mal and subop(mal probes. Former analysis 
similar to UCB. For the other part, carefully ensure LCB scores “concentrate quickly” and 
not too many subop(mal probes played.



Lower Bound Main Ideas
• Lemma 1: Let  be probability measures on measurable space . Let  be any 

event. Then  [Bretagnolle-Huber 1978, Tsybakov 2010]. 

• Lemma 2 (informal): The KL-divergence between two environments for the same policy is 
equivalent to the weighted sum of the associated decision distribu(ons’ KL-divergence [Tor-

Szepesvari 2020]. 

P, Q (Σ, ℱ) A ∈ ℱ
P(A) + Q(A) ≥ (1/2) ⋅ exp(−DKL(P∥Q))

DKL(Pπ,E | |Pπ,E′ 
) = ∑

a∈[A]
∑

p∈[P]

𝔼π,E[NT
(a,p)] ⋅ DKL(P(a,p)

π,E | |P(a,p)
π,E′ 

)

• Lower bound strategy: We construct two instance families, each with small sta(s(cal 
diameter. Each forces policies to be sufficiently explora(ve, suffering appropriate regret. We 
take the max of both.



• Lemma 1: Let  be probability measures on measurable space . Let  be any 
event. Then  [Bretagnolle-Huber 1978, Tsybakov 2010]. 

• Lemma 2 (informal): The KL-divergence between two environments for the same policy is 
equivalent to the weighted sum of the associated decision distribu(ons [Tor-Szepesvari 2020]. 

P, Q (Σ, ℱ) A ∈ ℱ
P(A) + Q(A) ≥ (1/2) ⋅ exp(−DKL(P∥Q))

DKL(Pπ,E | |Pπ,E′ 
) = ∑

a∈[A]
∑

p∈[P]

𝔼π,E[T(a,p)(N)] ⋅ DKL(P(a,p)
π,E | |P(a,p)

π,E′ 

)

• Main idea of lower bound: Consider environments  and  in which op(mal probe is 
switched (say probe  and ). 

E E′ 

p p′ 

2N0.99 ≥ R(π, N, E) + R(π, N, E′ )
≳ N/2 (Pπ,E(play p' N/2 times) + Pπ,E′ 

(play p N/2 times))
≳ (N/2) ⋅ exp(−DKL(Pπ,E∥∥Pπ,E))

≳ (N/2) ⋅ exp(−𝔼π,E[T(a,p)(N)]) ∴ 𝔼π,E[T(a,p)(N)] ≳ log N

“consistency”

“lemma 1”

“lemma 2”



Summary
• Main takeaways:  

• UCB works very well when we know how much we ought to boost es(mates, 
which requires knowledge of variance or es(mates [Audibert-Munos-Szepesvari 2009, Wesley-

Honda-Katehakis 2017]. 

• If samples are correlated in our sense, then those variance es(mates can be 
adap(vely and op(mally be controlled via another layer of op(mism. 

• Open problem: Extensions, high-probability regret guarantees, weighted mean-var 
regret …



Simple and Nearly-Optimal Sampling for 
Rank-1 Tensor Completion via Gauss-Jordan

Alejandro Gomez-Leos 
(UT Aus(n)

Preprint.

Oscar F. Lopez 
(Florida Atlan(c University)



Introduc(on

• Assume sample access to a low-rank matrix   

• Matrix comple(on: how many samples required fill in ? 

• Tensor comple(on: generaliza(on to low-rank mul(linear forms in  

• Theory mo(vated by prac(cal success in industrial and scien(fic compu(ng 

• Def: A tensor  is rank-1 if  s.t. 

M ∈ ℝd×d

M

⊗N
i=1 ℝd

𝒰 ∈ ⊗N
i=1 ℝd ∃ {u1, …, uN} ⊆ ℝd 𝒰(i1,i2,…,iN) = ∏N

k=1 (uk)ik

1 ? ? ?
5 ? 7 ?
? 10 −7 4

13 ? ? ?



Introduc(on (cont.)

• Problem: Given uniformly drawn entries , output  where  w.p.  

• Why study? 

• Special case of well-studied generaliza(ons (results up next) 

• Independent interest, par(cularly from geometric perspec(ve [Kahle et al. 2017, Jaramillo 2018, Singh-
Shapiro-Zhang 2020, Zhou-Ne-Peng-Zhou 2024] 

• This work: a simple linear algebraic characteriza(on, and applica(on to problem above 

• Assume for simplicity all components are nonzero

𝒰 �̂� �̂� = 𝒰 ≥ 2/3



Main Result

• Sampling complexity upper-bounds usually dependent on incoherence*  (  in worst-case). 

• :   entries suffice [Candes-Tao 2010, Recht 2011, Candes-Recht 2012, Chen 2015] 

• :  entries suffice [Jain-Oh 2014, Xia-Yuan 2019, Liu-Moitra 2020] 

• :   entries suffice [Krishnamurthy-Singh 2013, Montanari-Sun 2018, Stephan-Zhu 2024, Haselby et al. 2024]

μ = Ω(d)

N = 2 dμ logO(1) d

N = 3 d3/2μO(1) logO(1) d

N ≥ 4 dN/2(μN)O(N)logO(1) d

*Informally measures how well components discorrelate with fixed basis.

 Theorem (this work): Let . If  is a rank-1 tensor, then 

1.   samples suffice to recover  entries of  in (me .  
2. Moreover,  samples are necessary. 

d, N, q ∈ ℕ 𝒰 ∈ ⊗N
i=1 ℝd

≠0

m = O((dN)2 ⋅ log d) q 𝒰 O(qN + md2)
Ω(d ⋅ log(dN))



Main Result

• Notes: 

• Tight up to a factor of  when  (  in prac(ce) 

•  hard instance family where few samples   with large prob. 

• No dependence on 

d N = Θ(1) d ≫ N

∀ρ > 0, ∃ ⟹∥𝒰 − �̂�∥F ≥ ρd(N−1)/2

μ

 Theorem (this work): Let . If  is a rank-1 tensor, then 

1.   samples suffice to recover  entries of  in (me .  
2. Moreover,  samples are necessary. 

d, N, q ∈ ℕ 𝒰 ∈ ⊗N
i=1 ℝd

≠0

m = O((dN)2 ⋅ log d) q 𝒰 O(qN + md2)
Ω(d ⋅ log(dN))



Main Ideas
 Lemma: There exists a unique matrix  and bijec(ons   with the following property.  

Any nonzero tensors  induce the linear systems 

1.  over  and  over ,    

2.  over  and  over , 

 where (i)  is rank-1 iff  is consistent, and (ii)  and rank-1 iff (1) and (2) have same soluHon sets. 

A f, f̃
𝒰, 𝒯

Ax = f(𝒰) 𝔽2 Ax = f̃(𝒰) ℝ

Ax = f(𝒯) 𝔽2 Ax = f̃(𝒯) ℝ
𝒰 (1) 𝒰 = 𝒯

• Proof sketch:

𝒰(i1,i2,…,iN) = sign (
N

∏
ℓ=1

(uℓ)iℓ)
N

∏
ℓ=1

(uℓ)iℓ = (
N

∏
ℓ=1

sign ((uℓ)iℓ)) exp (
N

∑
ℓ=1

log (uℓ)iℓ ) := 𝒰′ (i1,i2,…,iN) exp (𝒰′ ′ (i1,i2,…,iN))

φ (𝒰′ (i1,i2,…,iN)) = ∑
ℓ

φ (sign (uℓ)iℓ ) ⟺ Ax = φ (sign(vec𝒰))
𝒰′ ′ (i1,i2,…,iN) = ∑

ℓ

log (uℓ)iℓ ⟺ Ax = log |vec𝒰 |



• Think of linear systems represented by their augmented matrices 

•  “observed entries are isomorphic to par(al linear systems” 

•  rank-1 TC  sketching ! 

• Over , leverage-score sampling says  samples suffice [Cohen-Lee-Musco-

Musco-Peng-Sidford 2014] 

• Challenge: Working over  as well (other machinery requires matrix-Chernoff bounds) 

• Fix: Express sample complexity as hi_ng (me of random walk on subspace graph

⟹

⟹ ≡ A

ℝ O((dN) ⋅ log(dN))

𝔽2

Main Ideas (cont.) 1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 1
0 1 1 0 1 0
0 1 1 0 0 1
0 1 0 1 1 0
0 1 0 1 0 1

Example  when A (d, N) = (2,3)



• Consider digraph on ver(ces 

connec(ng edges  if 
there’s a row of  whose 
inclusion “grows  into .”

{(α, W) ∣ α ∈ [rank𝔽2(A))], W subspace of rows𝔽2(A))}
u → v

A
u v

Main Ideas (cont.)



• Lemma: A random walk on this graph star(ng at node  hits the absorbing state 
 w.p.  ayer  steps. 

• Proof sketch:   Chain self-loops w.p. . In expecta(on  steps before transi(oning. 
Cannot transi(on more than  =  steps. En(re trajectory takes  steps. 
Claim follows by Markov’s inequality.

(0,0)
(rank𝔽2(A), rowspace𝔽2

(A)) ≥ 2/3 ≲ d2N

≥ 1/d d
rank𝔽2(A) Θ(dN) d2N

Main Ideas (cont.)



• Lemma (informal): Consider coupon collector variant:  urns, each with  unique balls. Each 
round draw in parallel a ball from each (  per round).  draws necessary. 

• Proof sketch: Track mar(ngale generated by “did-we-observe it” indicator variables. Apply 
Hoeffding’s lemma in manner similar to Azuma-Hoeffding proof. 

• Rough sketch of lower bound:  Pick , let .  

Correspond balls to component coordinates and correspond draws to observa(ons.  

One can show , and then apply reversed Markov inequality.

N d
N Ω(d log dN)

u′ is ∼R {±1}d 𝒰 = ρ(u1 ⊗ … ⊗ uN)

𝔼[∥�̂� − 𝒰∥2
F] ≥ ρdN−1

Lower Bound



Summary

• Simplified pre-exis(ng understanding of rank-1 tensor comple(on. 

• Problem difficulty doesn’t depend on incoherence, problem reduces to matrix 
sketching problem. 

• Open problem: Improve upper bound to match lower bound.



Thanks!


