Research Summary, 2022-2024

Alejandro Gomez-Leos

Single-Server Private Information Retrieval with Side Information Under Arbitrary Popularity Profiles

Alejandro Gomez-Leos (UT Austin)

This work was done while both authors were at Texas A&M University.

Presented at IEEE Information Theory Workshop 2022.

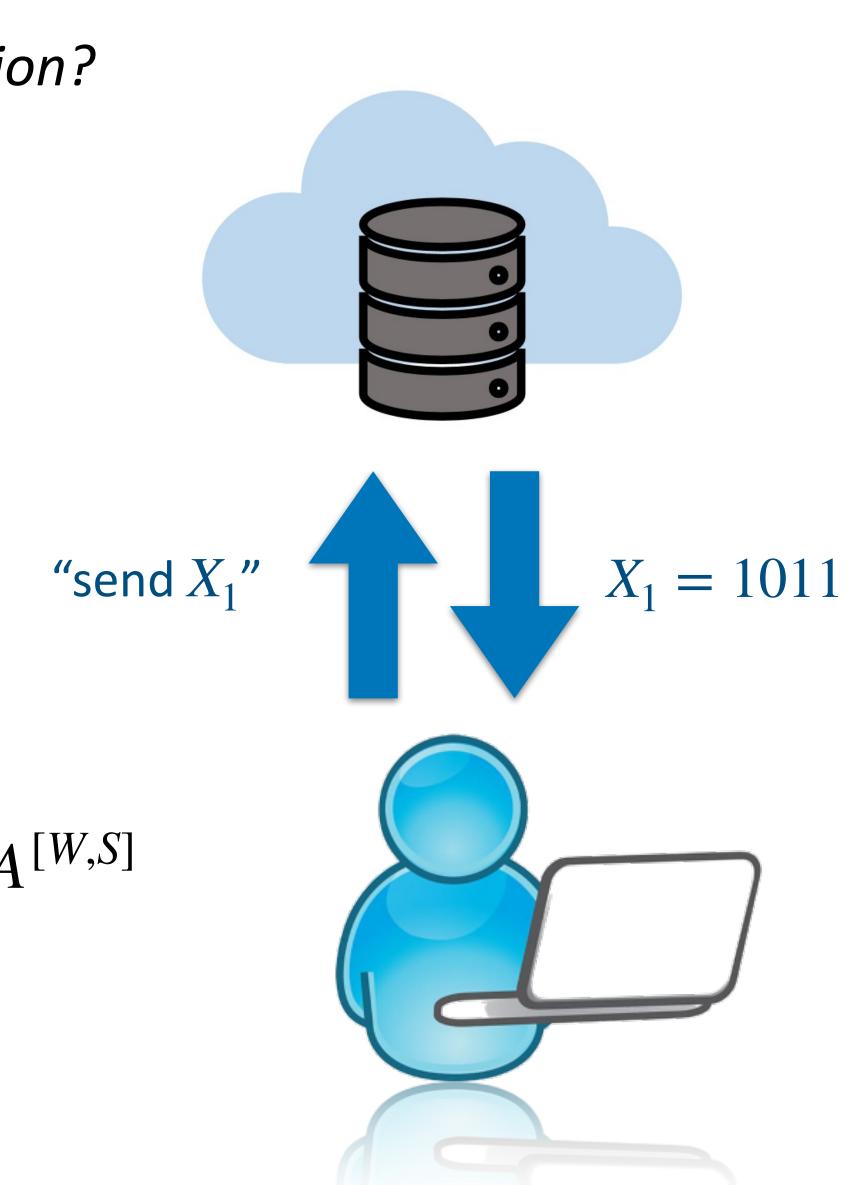
Anoosheh Heidarzadeh (Santa Clara University)

Private Information Retrieval with Side Information (PIR-SI)

- Can two parties efficiently and unilaterally exchange information?
- Two-party protocol client and server
 - Server holds data $\mathscr{D} := \{X_1, X_2, \dots, X_k\}$
 - Client demands X_W and secretly knows (2)
- A protocol prescribes query-answer procedure
 - Client sends bits $Q^{[W,S]}$ asking to compute $f(Q^{[W,S]}, \mathcal{D}) := A^{[W,S]}$
 - Server faithfully sends bits $A^{[W,S]}$

$$(X_i \sim_{\mathsf{R}} \mathbb{F}_q^n)$$

$$X_i)_{i\in S}, m := |S|$$



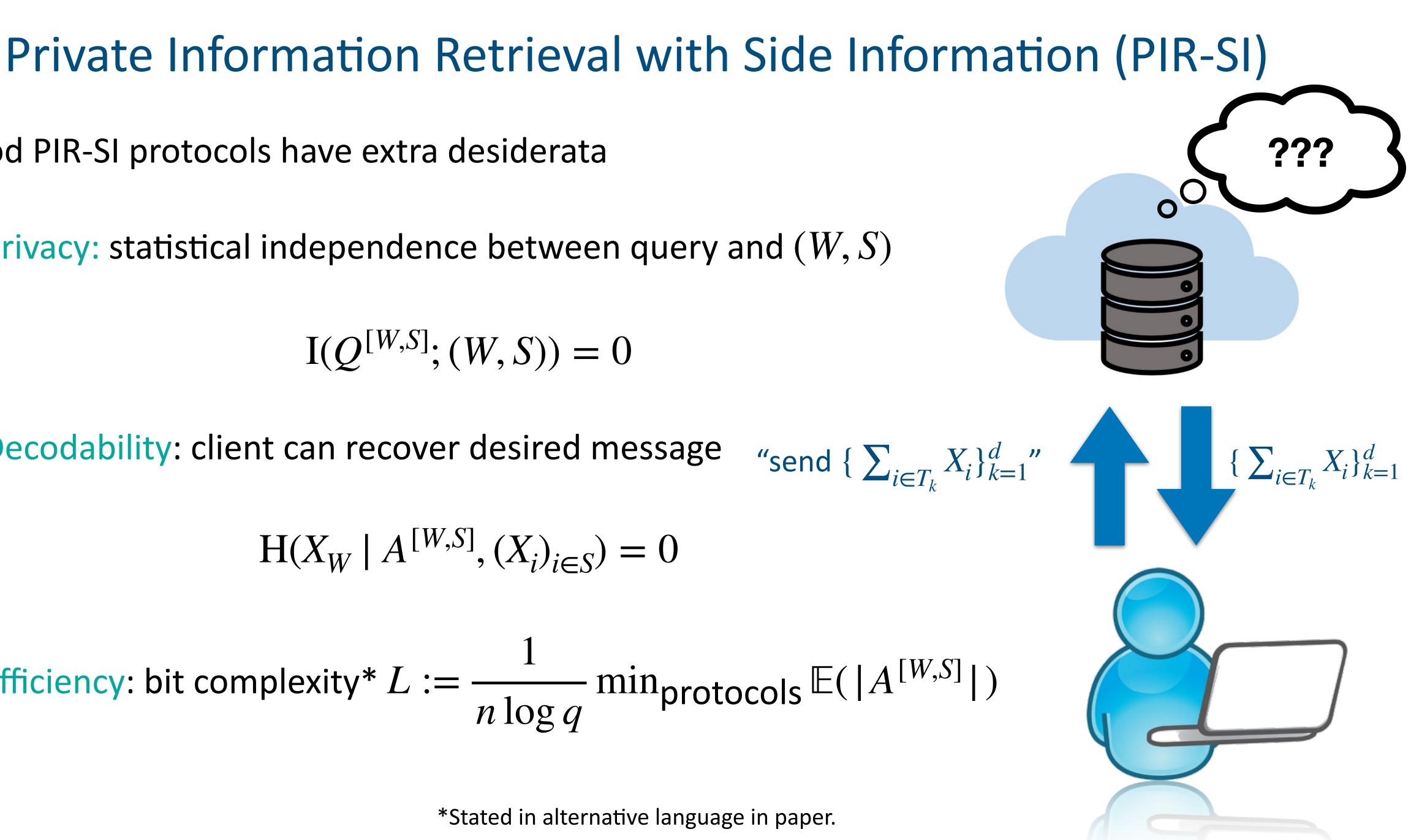
- Good PIR-SI protocols have extra desiderata
 - Privacy: statistical independence between query and (W, S)

 $I(Q^{[W,S]}; (W,S)) = 0$

• **Decodability**: client can recover desired message

$$H(X_W | A^{[W,S]}, (X_i)_{i \in S})$$

Efficiency: bit complexity* $L := \frac{1}{m \log \alpha} \min_{\text{protocols}} \mathbb{E}(|A^{[W,S]}|)$ $n \log q$



Related Work

- Seminal result: $\Omega(k)$ bits necessary if (i) info-theoretic privacy required (ii) "single" database" (iii) $S = \emptyset$ [Chor-Goldreich-Kushilevitz-Sudan 1995, 1998]
- Scenarios admitting cheaper protocols?
 - 1997, Cachin-Micali-Stadler 1999]
 - Sun-Jafar 2016, Banawan-Ulukuus 2017, 2018]

Disclaimer: not state-of-the-art, many of these are studying slight variations (e.g. multi-message PIR)

• Relaxing (i): server poly-bounded and exists one-way f [Chor-Gilboa 1997, Kushilevitz-Ostrovsky]

• Relaxing (ii): multiple copies on non-colluding servers [Chor-Goldreich-Kushilevitz-Sudan 1995, 1998,

• Relaxing (iii): $S \neq \emptyset$ [Heidarzadeh et al. 2018, Li-Gastpar 2018, Kadhe et al. 2017, 2020, Heidarzadeh-Sprintson 2022]

Related Work (cont.)

Sun-Jafar '17

Banawan-Ulukus '17, '18

Kadhe et al. '20

Kadhe et al. '17

Heidarzadeh et al. '18

Li-Gastpar '18

Heidarzadeh-Sprintson '22

Vithana-Banawan-Ulukus '20

This work

Prior work on PIR-SI assumes marginal distribution of demand is uniform.

We study the feasibility of PIR-SI after relaxing this.

"Data popularity"	# Servers	Side Info.
No	Multiple	No
No	Multiple	No
No	Multiple	Yes
No	Single	Yes
Yes	Multiple	No
Yes	Single	Yes

Data Popularity Model

 $\Pr[W = w \mid S = s] := -\frac{1}{5}$

Theorem [Kadhe et al. 2017]: Let $n, k, m \in \mathbb{N}$ where and $m + 1 \mid k$. If $\vec{p} = 1$, then $L(k, m, \vec{p}) = \frac{k}{m+1}.$

• General case?

• Popularity profile: $\vec{p} := (p_1, p_2, \dots, p_k) \in \mathbb{N}^k$. Relative weighting induces distribution:

$$\frac{p_w}{\sum_{i \notin S} p_i}, \Pr[S = s] := \binom{k}{m}^{-1}$$

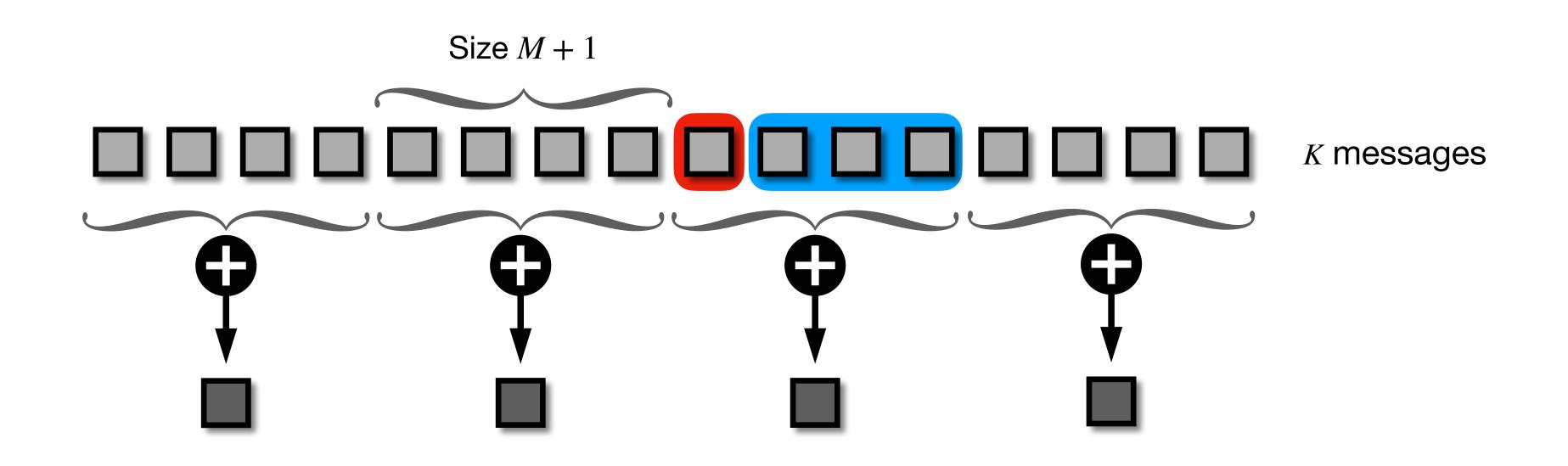
Main Result

Theorem (this work): Let $k, m \in \mathbb{N}$ where $m + 1 < \sqrt{k}$ and $m + 1 \mid k$. There's an $\delta := \delta(\vec{p})$ such that $\frac{k}{m+1} \le L(k,m,\vec{p}) \le (L)$

- Corollary: max $|p_i p_j| = O(1) \Longrightarrow \delta = O(1/k)$ and RHS tight
- Note: protocol runs in time $k^{1+O(m)}$ or O(m) if marginals pre-computed
- Based on optimal interpolation between two previously known protocols

$$(k-m)\cdot\delta+rac{k}{m+1}\cdot(1-\delta)$$

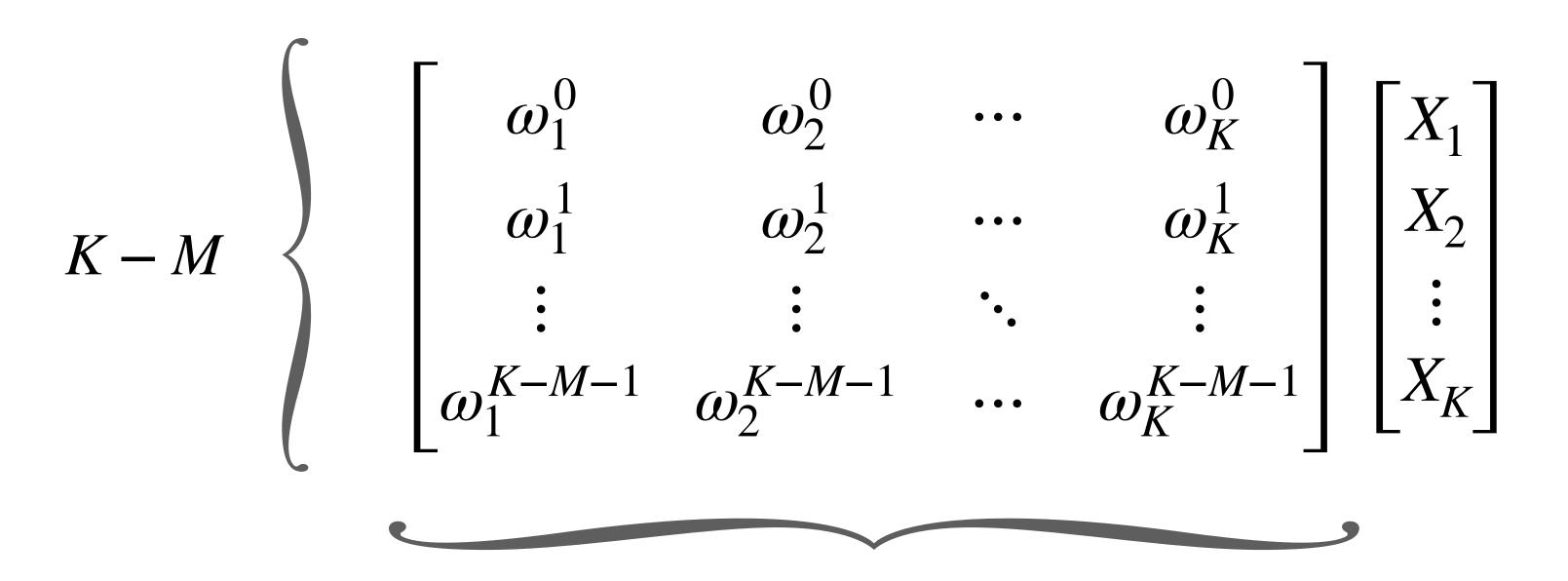
Partition-and-Code Scheme [Kadhe et al. 2017]



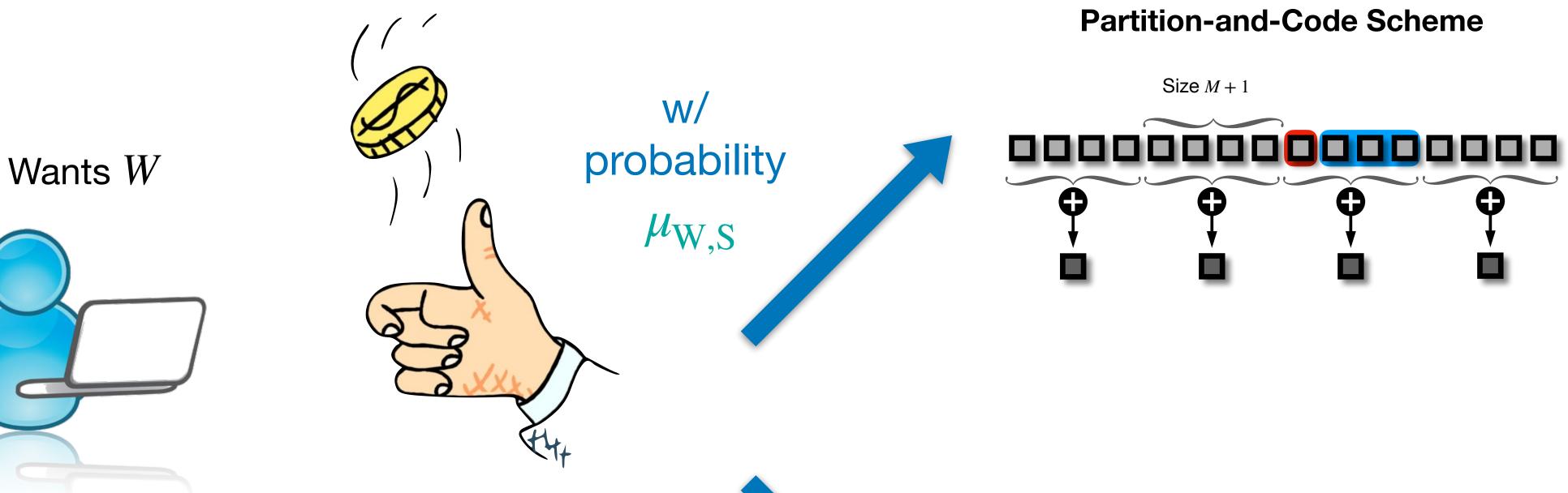
- $P_0 := \{w\} \cup \{i : i \in S\}$
- Sample random (m + 1)-uniform partition of $[k] \setminus P_0$
- Query k/(m + 1) sums over each

Generalized Reed-Solomon Scheme [Heidarzadeh et al. 2018]

- Pick distinct $\omega_1, \ldots, \omega_k \in \mathbb{F}_q$.
- Query k m linear combinations of this form.



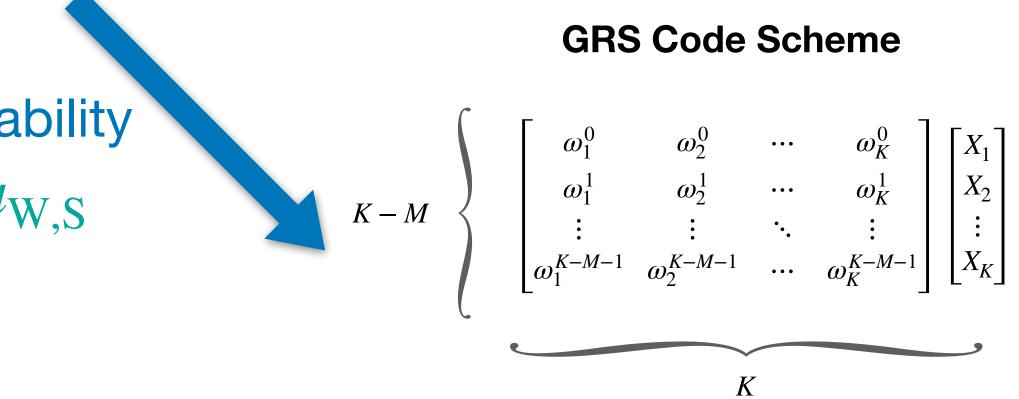
PC-GRS Scheme



Knows S

w/ probability $1 - \mu_{W,S}$

Next: Choosing biases



Choosing Coin Biases

Minimize $\sum \Pr[W = w, S = s]$. (W,S)

s.t.

• $\Omega((k/m)^m)$ size? No!

• $m + 1 < \sqrt{k}$ implies reduction to smaller program of size O(m)

Non-trivial pigeonholing argument (see Lemma 3)

$$\left[\mu_{w,s}\left(\frac{K}{M+1}\right) + (1-\mu_{w,s})(K-M)\right]$$

 $\Pr[W = w \mid \text{query } Q] = \Pr[W = w] \quad \forall w \in [k]$

Lower Bound

- Claim: $\Omega(k/(m+1))$ bits are necessary.
- **Proof sketch:** (use entropy chain-rule)
- For query generated by protocol, consider any message X_i .
- By decodability, $\exists m$ messages such that X_i recoverable from them (otherwise $p_i = 0$).
- Repeat argument over remaining messages, yields k/(m + 1) pairs.
- \implies server's response must have at least k/(m+1) linear combinations \blacksquare .



- Generalized PIR-SI to **nonuniform** demands
- Bounded the bit complexity of this problem
 - Optimal protocols when popularities pairwise within O(1)
 - O(m) runtime for pre-computed marginals
- **Open problem:** Tight lower bound in other regimes?

Summary

Normal Bandits with Noisy Probes

Alejandro Gomez-Leos (UT Austin)

Sanjay Shakkottai (UT Austin)

Gustavo de Veciana (UT Austin)

In-progress.

k-Armed Bandits

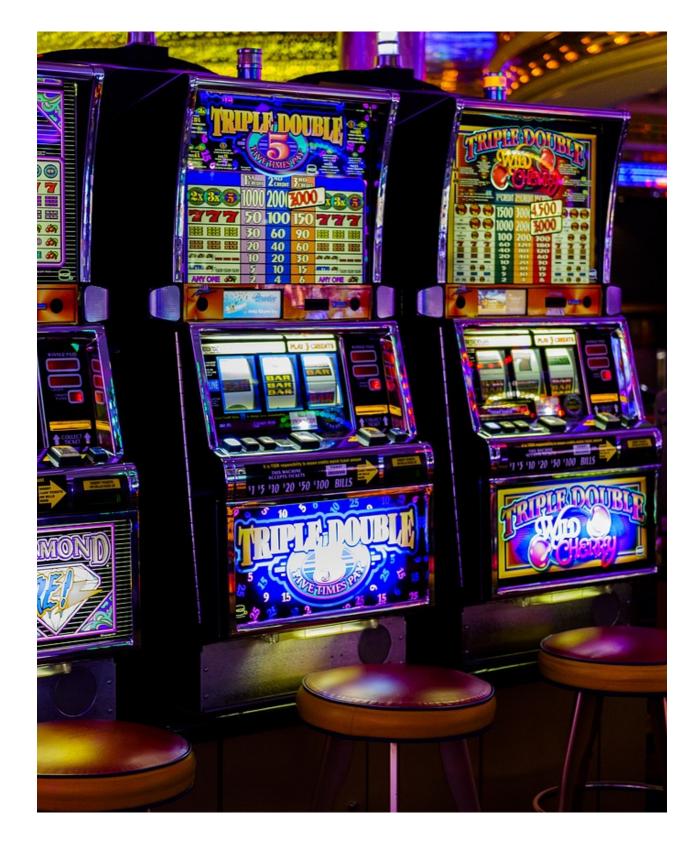
- Sequential decision-making: how to compete with best player in hindsight?
- Unknown distributions D_1, \ldots, D_k with means μ_1, \ldots, μ_k
- Play for N rounds. On round $t \in [N]$:
 - Pick arm $a_t \in [k]$, obtain iid reward $x_t \sim D_{a_t}$
 - Suffer round regret $\operatorname{REG}_t = \max \mu_i \mathbb{E}(x_t)$
 - Use history to inform over next arm decision (follow seq. of policies $\pi_t: (a_1, x_1, a_2, x_2, \dots, x_{t-1}) \mapsto [k])$
- **Question:** Which policies admit asymptotically optimal (cumulative) regret?

- UCB is the algorithmic workhorse for many variations:
 - **High level idea:** maintain time-averages and <u>upper-confidence</u> **b**ounds for each. Pick arm with highest (empirical mean) + UCB.
 - Essentially optimal for σ^2 -subgaussian inputs, yields regret $O(\sigma^2 k \log N)$ [Burnetas-Katehakis 1996, Auer-Bianchi-Fischer 2002]

high regret \implies chose too many suboptimal arms \implies their bounds are small \implies their empirical means are too high \implies exp. small prob. event!

• Intuition: One should take risks for long-term wellbeing.

The Classics



k-Armed Bandits with a Twist

- $A \in \mathbb{N}$ actions, $P \in \mathbb{N}$ probes
- Parameters $(\mu_a)_{a \in [A]} \subseteq \mathbb{R}$ and $(\nu_p)_{p \in [P]} \subseteq \mathbb{R}^+$ unknown beforehand
- On round $t \in [N]$, pick (action, probe) = $(a_t, p_t) \in [A] \times [P]$
 - Obtain iid $x_t \sim \mathcal{N}(\mu_{a_t}, \nu_{p_t})$

• suffer Mean-Var* regret $\Delta_{a_{\cdot}}^{\text{MEAN}} + \Delta$

example, industrial chemical manufacturing

$$\mathbf{v}_{p_t}^{\mathsf{VAR}} = (\mu_{\mathsf{MAX}} - \mu_{a_t}) + (\nu_{p_t} - \nu_{\mathsf{MIN}})$$

Motivation: Decision-making in which measurement devices are part of action space. For *Canonical bandit problem variation

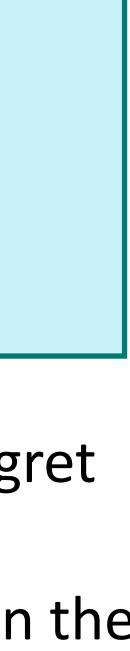
Main Result

- Trivial reduction to AP-armed bandit $\implies O(AP \log N)$ regret policy
- Is $O((A + P) \cdot \log N)$ doable? Yes!

Theorem (this work): Suppose π suffers regret $R(\pi, N) \leq N^{0.99}$ on every instance. Then, $R(\pi, N) \gtrsim \sum_{a \in [A]: \Delta_a^{\mu} > 0} \frac{\nu_{MIN}^2 \log N}{\Delta_a^{\mu}} + \sum_{p \in [P]: \Delta_p^{\nu} > 0} \frac{\nu_p^2 \log N}{\Delta_p^{\nu}}$ Moreover, [our policy] π^* suffers regret upper-bounded by a constant factor of the above.

- These are "silly" policies, such as "always-take-decision-X" which is trivially unbeatable in the environments where "X" is optimal

• Ours is *consistency-optimal:* the only "better" policies sometimes suffer nearly-linear regret



Upper Bound Main Ideas

- Our policy is inspired by alternating-optimization algorithms like *coordinate descent*.
 - (empirical mean) + UCB where this UCB score is specific to the chosen probe.
 - not too many suboptimal probes played.

• **High-level idea:** maintain time-averages and <u>lower-confidence</u> <u>bounds</u> of variances. Each round, pick probe with lowest (empirical variance) - LCB. Then, pick action with highest

• **Proof in a nutshell:** Separate regret from optimal and suboptimal probes. Former analysis similar to UCB. For the other part, carefully ensure LCB scores "concentrate quickly" and

Lower Bound Main Ideas

- event. Then $P(A) + Q(\overline{A}) \ge (1/2) \cdot \exp(-D_{KL}(P \| Q))$ [Bretagnolle-Huber 1978, Tsybakov 2010].
- Szepesvari 2020].

$$D_{KL}(P_{\pi,E} | | P_{\pi,E'}) = \sum_{a \in [A]} \sum_{p \in [P]} \mathbb{E}_{\pi,E}[N_{(a,p)}^T] \cdot D_{KL}(P_{\pi,E}^{(a,p)} | | P_{\pi,E'}^{(a,p)})$$

• Lower bound strategy: We construct two instance families, each with small statistical take the max of both.

• Lemma 1: Let P, Q be probability measures on measurable space (Σ, \mathcal{F}) . Let $A \in \mathcal{F}$ be any

• Lemma 2 (informal): The KL-divergence between two environments for the same policy is equivalent to the weighted sum of the associated decision distributions' KL-divergence [Tor-

diameter. Each forces policies to be sufficiently explorative, suffering appropriate regret. We

- event. Then $P(A) + Q(\overline{A}) \ge (1/2) \cdot \exp(-D_{KL}(P \| Q))$ [Bretagnolle-Huber 1978, Tsybakov 2010].

$$D_{KL}(P_{\pi,E} | | P_{\pi,E'}) = \sum_{a \in [A]} \sum_{p \in [P]} \mathbb{E}_{\pi,E}[T^{(a,p)}(N)] \cdot D_{KL}(P_{\pi,E}^{(a,p)} | | P_{\pi,E'}^{(a,p)})$$

- Main idea of lower bound: Consider environments E and E' in which optimal probe is switched (say probe p and p').
 - $2N^{0.99} \ge R(\pi, N, E) + R(\pi, N, E')$ "consistency" $\gtrsim N/2 \left(P_{\pi.E} (\text{play p' N/2 times}) \right)$ $\gtrsim (N/2) \cdot \exp(-D_{KL}(P_{\pi,E}|| || P_{\pi,E}))$ $\gtrsim (N/2) \cdot \exp(-\mathbb{E}_{\pi,E}[T^{(a,p)}(N)])$

• Lemma 1: Let P, Q be probability measures on measurable space (Σ, \mathcal{F}) . Let $A \in \mathcal{F}$ be any

• Lemma 2 (informal): The KL-divergence between two environments for the same policy is equivalent to the weighted sum of the associated decision distributions [Tor-Szepesvari 2020].

+
$$P_{\pi,E'}$$
(play p N/2 times))

"lemma 1"

"lemma 2"

- Main takeaways:
 - Honda-Katehakis 2017].
- regret ...

• UCB works very well when we know *how much* we ought to boost estimates, which requires knowledge of variance or estimates [Audibert-Munos-Szepesvari 2009, Wesley-

• If samples are correlated in our sense, then those variance estimates can be adaptively and optimally be controlled via another layer of optimism.

• Open problem: Extensions, high-probability regret guarantees, weighted mean-var

Simple and Nearly-Optimal Sampling for Rank-1 Tensor Completion via Gauss-Jordan

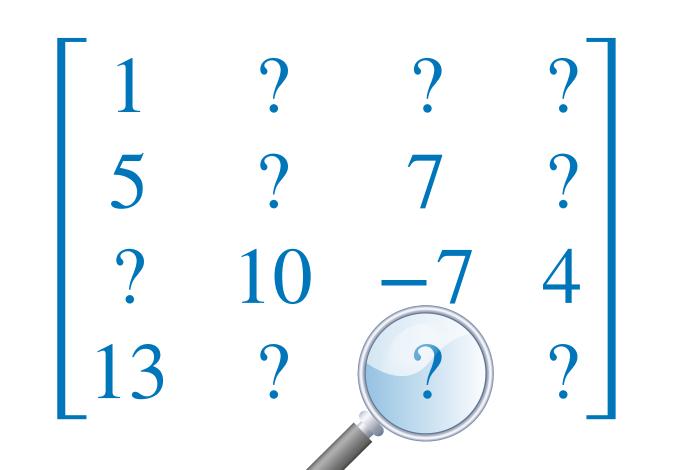
Alejandro Gomez-Leos (UT Austin)

Oscar F. Lopez (Florida Atlantic University)

Preprint.

Introduction

- Assume sample access to a **low-rank** matrix $M \in \mathbb{R}^{d \times d}$
- Matrix completion: how many samples required fill in M?
- Tensor completion: generalization to low-rank multilinear forms in $\bigotimes_{i=1}^{N} \mathbb{R}^{d}$
- Theory motivated by practical success in industrial and scientific computing
- **Def:** A tensor $\mathscr{U} \in \bigotimes_{i=1}^{N} \mathbb{R}^{d}$ is rank-1 if $\exists \{\mathbf{u}_{1}, ..., \mathbf{u}_{N}\} \subseteq \mathbb{R}^{d}$ s.t. $\mathscr{U}_{(i_{1}, i_{2}, ..., i_{N})} = \prod_{k=1}^{N} (\mathbf{u}_{k})_{i_{k}}$



Introduction (cont.)

- **Problem:** Given uniformly drawn entries \mathcal{U} , output $\hat{\mathcal{U}}$ where $\hat{\mathcal{U}} = \mathcal{U}$ w.p. $\geq 2/3$
- Why study?
 - Special case of well-studied generalizations (results up next)
 - Independent interest, particularly from geometric perspective [Kahle et al. 2017, Jaramillo 2018, Singh-Shapiro-Zhang 2020, Zhou-Ne-Peng-Zhou 2024]
- This work: a simple linear algebraic characterization, and application to problem above
- Assume for simplicity all components are nonzero

Main Result

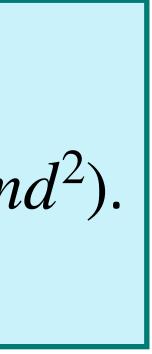
Theorem (this work): Let $d, N, q \in \mathbb{N}$. If $\mathcal{U} \in \mathbb{N}$

1. $m = O((dN)^2 \cdot \log d)$ samples suffice to recover q entries of \mathcal{U} in time $O(qN + md^2)$. 2. Moreover, $\Omega(d \cdot \log(dN))$ samples are necessary.

- Sampling complexity upper-bounds usually dependent on *incoherence** μ (= $\Omega(d)$ in worst-case).
 - $N = 2: d\mu \log^{O(1)} d$ entries suffice [Candes-Tao 2010, Recht 2011, Candes-Recht 2012, Chen 2015]
 - $N = 3: d^{3/2} \mu^{O(1)} \log^{O(1)} d$ entries suffice [Jain-Oh 2014, Xia-Yuan 2019, Liu-Moitra 2020]
 - $N \ge 4$: $d^{N/2}(\mu N)^{O(N)}\log^{O(1)}d$ entries suffice [Krishnamurthy-Singh 2013, Montanari-Sun 2018, Stephan-Zhu 2024, Haselby et al. 2024]

*Informally measures how well components discorrelate with fixed basis.

$$\bigotimes_{i=1}^{N} \mathbb{R}_{\neq 0}^{d}$$
 is a rank-1 tensor, then



Main Result

Theorem (this work): Let $d, N, q \in \mathbb{N}$. If $\mathcal{U} \in$

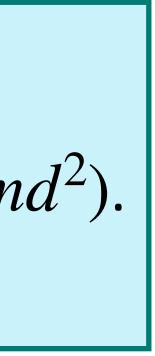
1. $m = O((dN)^2 \cdot \log d)$ samples suffice to recover q entries of \mathcal{U} in time $O(qN + md^2)$. 2. Moreover, $\Omega(d \cdot \log(dN))$ samples are necessary.

Notes:

- Tight up to a factor of d when $N = \Theta(1)$ ($d \gg N$ in practice)
- No dependence on μ

$$\bigotimes_{i=1}^{N} \mathbb{R}_{\neq 0}^{d}$$
 is a rank-1 tensor, then

• $\forall \rho > 0$, \exists hard instance family where few samples $\Longrightarrow \|\mathscr{U} - \hat{\mathscr{U}}\|_F \ge \rho d^{(N-1)/2}$ with large prob.



Main Ideas

Lemma: There exists a unique matrix **A** and bijections f, \tilde{f} with the following property. Any nonzero tensors \mathscr{U}, \mathscr{T} induce the linear systems

- 1.
- 2.

where (i) \mathcal{U} is rank-1 iff (1) is consistent, and (ii) $\mathcal{U} = \mathcal{T}$ and rank-1 iff (1) and (2) have same solution sets.

Proof sketch:

$$\begin{aligned} \mathscr{U}_{(i_{1},i_{2},\ldots,i_{N})} &= \operatorname{sign}\left(\prod_{\ell=1}^{N} (\mathbf{u}_{\ell})_{i_{\ell}}\right) \left|\prod_{\ell=1}^{N} (\mathbf{u}_{\ell})_{i_{\ell}}\right| = \left(\prod_{\ell=1}^{N} \operatorname{sign}\left((\mathbf{u}_{\ell})_{i_{\ell}}\right)\right) \left(\exp\left(\sum_{\ell=1}^{N} \log\left|\left(\mathbf{u}_{\ell}\right)_{i_{\ell}}\right|\right)\right) := \mathscr{U}_{(i_{1},i_{2},\ldots,i_{N})} \exp\left(\mathscr{U}_{(i_{1},i_{2},\ldots,i_{N})}^{\prime\prime\prime}\right) \exp\left(\mathscr{U}_{(i_{1},i_{2},\ldots,i_{N})}^{\prime\prime\prime}\right) = \sum_{\ell} \varphi\left(\operatorname{sign}\left(\mathbf{u}_{\ell}\right)_{i_{\ell}}\right) \iff \mathbf{A}x = \varphi\left(\operatorname{sign}(\operatorname{vec}\mathscr{U})\right) \\ \mathscr{U}_{(i_{1},i_{2},\ldots,i_{N})}^{\prime\prime\prime} = \sum_{\ell} \log\left|\left(\mathbf{u}_{\ell}\right)_{i_{\ell}}\right| \iff \mathbf{A}x = \log|\operatorname{vec}\mathscr{U}| \end{aligned}$$

 $\mathbf{A}x = f(\mathcal{U})$ over \mathbb{F}_2 and $\mathbf{A}x = \tilde{f}(\mathcal{U})$ over \mathbb{R} ,

 $\mathbf{A}x = f(\mathcal{T})$ over \mathbb{F}_2 and $\mathbf{A}x = \tilde{f}(\mathcal{T})$ over \mathbb{R} ,

Main Ideas (cont.)

- - \implies rank-1 TC \equiv sketching A!
 - Musco-Peng-Sidford 2014]
- Fix: Express sample complexity as hitting time of random walk on subspace graph

Main Ideas (cont.) $1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$ • Think of linear systems represented by their augmented matrices $1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0$ • \Rightarrow "observed entries are isomorphic to partial linear systems" $1 \quad 0 \quad 1 \quad 1 \quad 0$ $0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0$ $1 \quad 0 \quad 1 \quad 0$ $0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0$ $1 \quad 0 \quad 1 \quad 0$ $0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1$ $0 \quad 1 \quad 1 \quad 0 \quad 0$ $0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1$ $0 \quad 1 \quad 1 \quad 0 \quad 0$ $0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0$ $0 \quad 1 \quad 1 \quad 0 \quad 0$

Example A when (d, N) = (2,3)

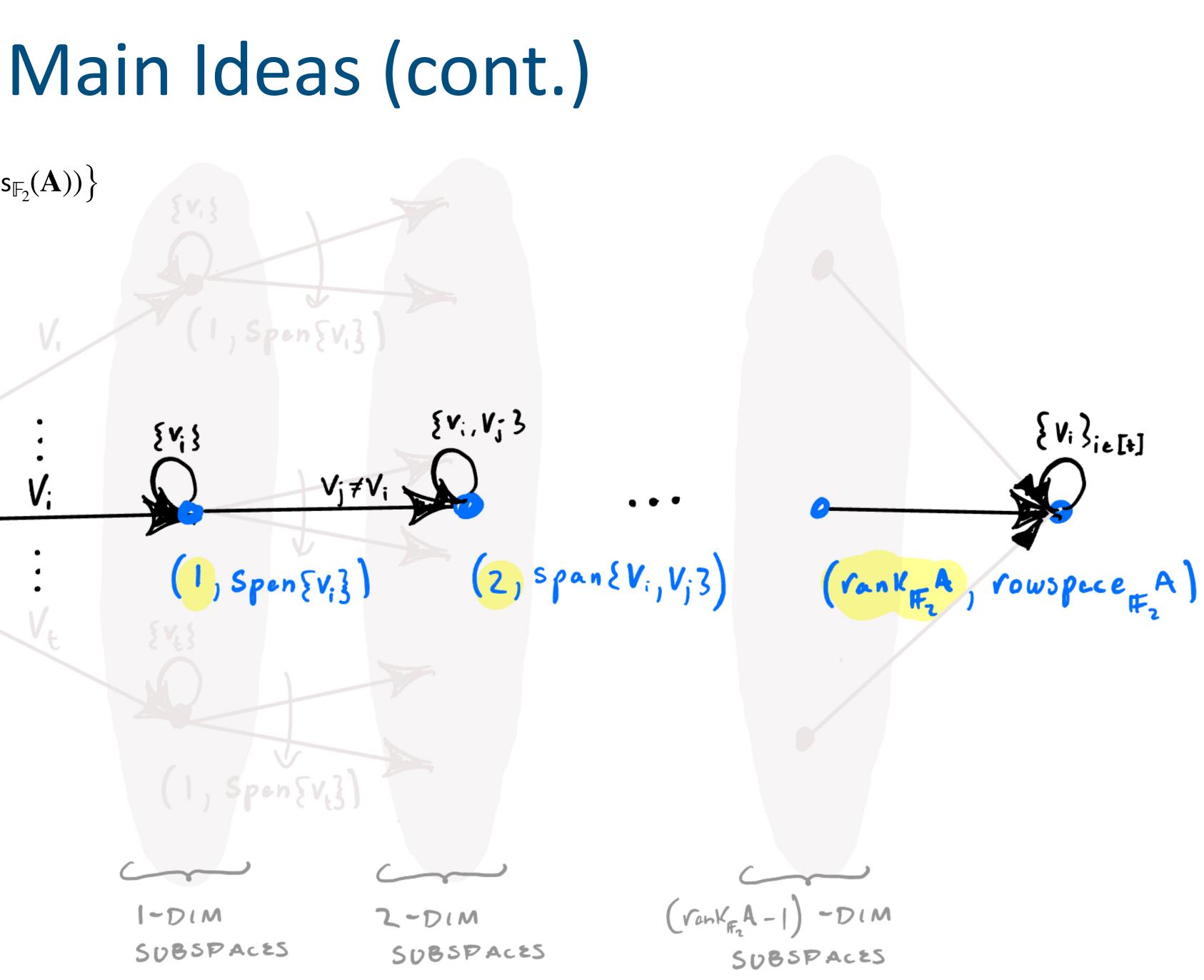
• Over \mathbb{R} , leverage-score sampling says $O((dN) \cdot \log(dN))$ samples suffice [Cohen-Lee-Musco-

Challenge: Working over \mathbb{F}_2 as well (other machinery requires matrix-Chernoff bounds)

V;

• Consider digraph on vertices $\{(\alpha, W) \mid \alpha \in [\operatorname{rank}_{\mathbb{F}_2}(\mathbf{A}))], W$ subspace of rows $_{\mathbb{F}_2}(\mathbf{A}))\}$ connecting edges $u \rightarrow v$ if there's a row of A whose inclusion "grows *u* into *v*."

(0, Spen { 0 })



Main Ideas (cont.)

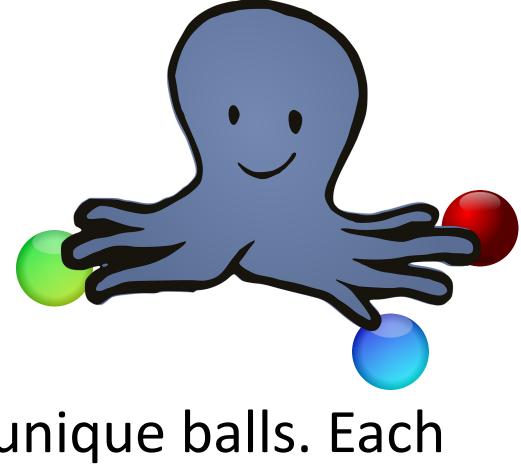
- Lemma: A random walk on this graph starting at node (0,0) hits the absorbing state $(\operatorname{rank}_{\mathbb{F}_2}(\mathbf{A}), \operatorname{rowspace}_{\mathbb{F}_2}(\mathbf{A}))$ w.p. $\geq 2/3$ after $\leq d^2N$ steps.
- **Proof sketch:** Chain self-loops w.p. $\geq 1/d$. In expectation d steps before transitioning. Cannot transition more than $\operatorname{rank}_{\mathbb{F}_2}(A) = \Theta(dN)$ steps. Entire trajectory takes d^2N steps. Claim follows by Markov's inequality.

Lower Bound

- Lemma (informal): Consider coupon collector variant: N urns, each with d unique balls. Each round draw in parallel a ball from each (N per round). $\Omega(d \log dN)$ draws necessary.
- **Proof sketch:** Track martingale generated by "did-we-observe it" indicator variables. Apply Hoeffding's lemma in manner similar to Azuma-Hoeffding proof.
- Rough sketch of lower bound: Pick $\mathbf{u}_i s \sim_R \{\pm 1\}^d$, let $\mathcal{U} = \rho(\mathbf{u}_1 \otimes \ldots \otimes \mathbf{u}_N)$.

Correspond balls to component coordinates and correspond draws to observations.

One can show $\mathbb{E}[\|\hat{\mathcal{U}} - \mathcal{U}\|_{F}^{2}] \ge \rho d^{N-1}$, and then apply reversed Markov inequality.



- Simplified pre-existing understanding of rank-1 tensor completion.
- Problem difficulty doesn't depend on incoherence, problem reduces to matrix sketching problem.
- **Open problem:** Improve upper bound to match lower bound.

Thanks!